ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Graph neural networks: Variations and applications

Автор: Microsoft Research

Загружено: 2018-04-20

Просмотров: 112358

Описание: Many real-world tasks require understanding interactions between a set of entities. Examples include interacting atoms in chemical molecules, people in social networks and even syntactic interactions between tokens in program source code. Graph structured data types are a natural representation for such systems, and several architectures have been proposed for applying deep learning methods to these structured objects. I will give an overview of the research directions inside Microsoft that have explored different architectures and applications for deep learning on graph structured data.

See more at https://www.microsoft.com/en-us/resea...

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Graph neural networks: Variations and applications

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

An Introduction to Graph Neural Networks: Models and Applications

An Introduction to Graph Neural Networks: Models and Applications

Intro to graph neural networks (ML Tech Talks)

Intro to graph neural networks (ML Tech Talks)

Machine Learning for Combinatorial Optimization: Some Empirical Studies

Machine Learning for Combinatorial Optimization: Some Empirical Studies

But what is a convolution?

But what is a convolution?

GraphRAG: союз графов знаний и RAG: Эмиль Эйфрем

GraphRAG: союз графов знаний и RAG: Эмиль Эйфрем

Может ли у ИИ появиться сознание? — Семихатов, Анохин

Может ли у ИИ появиться сознание? — Семихатов, Анохин

Jure Leskovec:

Jure Leskovec: "Large-scale Graph Representation Learning"

Generalizing Convolutions for Deep Learning

Generalizing Convolutions for Deep Learning

A Neural Network Model That Can Reason - Prof. Christopher Manning

A Neural Network Model That Can Reason - Prof. Christopher Manning

Понимание графовых сетей внимания

Понимание графовых сетей внимания

Distill and transfer learning for robust multitask RL

Distill and transfer learning for robust multitask RL

LSTM is dead. Long Live Transformers!

LSTM is dead. Long Live Transformers!

KGCN | Knowledge Graph Convolutional Networks - Machine Learning over a Knowledge Graph

KGCN | Knowledge Graph Convolutional Networks - Machine Learning over a Knowledge Graph

ICLR 2021 Keynote -

ICLR 2021 Keynote - "Geometric Deep Learning: The Erlangen Programme of ML" - M Bronstein

Theoretical Foundations of Graph Neural Networks

Theoretical Foundations of Graph Neural Networks

Но что такое нейронная сеть? | Глава 1. Глубокое обучение

Но что такое нейронная сеть? | Глава 1. Глубокое обучение

Graph Neural Networks

Graph Neural Networks

Deep learning on graphs: successes, challenges | Graph Neural Networks | Michael Bronstein

Deep learning on graphs: successes, challenges | Graph Neural Networks | Michael Bronstein

Graph Neural Networks: A gentle introduction

Graph Neural Networks: A gentle introduction

Graph Neural Networks - a perspective from the ground up

Graph Neural Networks - a perspective from the ground up

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]