ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Andy Oertel: Certifying combinatorial optimization: A unified approach with pseudo-Boolean reasoning

Автор: MIAO Research

Загружено: 2026-01-07

Просмотров: 23

Описание: Wednesday Jan 7, 2025
Certifying combinatorial optimization: A unified approach using pseudo-Boolean reasoning
(Andy Oertel, Lund University and University of Copenhagen)

Combinatorial optimization is a powerful way to solve complex problems, like planning, scheduling, or even hardware verification, by expressing the problem in a mathematical form that can be solved by general solvers. Due to major advances in algorithms for solving combinatorial optimization problems, these solvers can tackle real-world challenges efficiently. However, as solvers become more powerful, they also become larger and more complex, which makes it harder to trust that their output is correct. Ensuring that the solver gives a correct answer becomes especially important when mistakes could have serious consequences, e.g., when solvers are used to allocate organs for transplantation.

Testing the solver, which verifies correctness only on known input–output pairs, provides no guarantee that the solver returns correct answers on untested inputs and therefore does not increase our trust in the correctness of the answer. Formal verification can prove that a solver adheres to a formal specification and thus guarantees that the answer of the solver is correct, but this approach remains largely infeasible for modern solvers. We propose the technique of certifying algorithms, which has been proven to be effective in providing correctness guarantees for solver outputs. The idea behind certifying algorithms is that the algorithm generates a certificate that shows the correctness of result. An independent tool can then verify that the result is correct with respect to the input using the certificate to simplify the verification effort. This verification tool can be simple enough to allow formal verification, ensuring that its verdict can be trusted.

This thesis presents a multipurpose certification system built on so-called pseudo-Boolean reasoning, which enables the generation of correctness certificates across a wide range of combinatorial optimization paradigms. Developing a multipurpose system allows the checker to be reused for all types of solvers, which sets our work apart from previous, more specialized approaches. Although we use pseudo-Boolean reasoning to certify the solver output, the solver itself does not need to perform pseudo-Boolean reasoning, and making a solver certifying does not require any changes to its internal reasoning. To check the correctness of the certificates, we provide a formally verified checking toolchain. Furthermore, we develop certification methods for solving paradigms that previously lacked any certifying algorithms.

In the first hour of this seminar, I will give a broad overview over the field of certifying algorithms, our certification approach, and the main contributions of my PhD thesis. In the second hour, we will have a closer look at how our certification system works and what a certificate generated by a solver looks like. We will also briefly discuss how such certificates are checked by looking at how our VeriPB checker works.


For more information about the MIAO seminars, please visit https://jakobnordstrom.se/miao-seminars/ .

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Andy Oertel: Certifying combinatorial optimization: A unified approach with pseudo-Boolean reasoning

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

Lecture 19: Dynamic Programming I: Fibonacci, Shortest Paths

Lecture 19: Dynamic Programming I: Fibonacci, Shortest Paths

1. Algorithms and Computation

1. Algorithms and Computation

Computational Exploration of General Collatz with Wolfram Technologies

Computational Exploration of General Collatz with Wolfram Technologies

WHOOPS '25: Сквозная проверка для решения подграфов [демо] (Ён Киам Тан)

WHOOPS '25: Сквозная проверка для решения подграфов [демо] (Ён Киам Тан)

Задача из вступительных Стэнфорда

Задача из вступительных Стэнфорда

Designing Human-AI Decision Systems with Behavioral Insights: Incentives, Transparency, and Learning

Designing Human-AI Decision Systems with Behavioral Insights: Incentives, Transparency, and Learning

🎙 Честное слово с Русланом Левиевым

🎙 Честное слово с Русланом Левиевым

Самый короткий тест на интеллект Задача Массачусетского профессора

Самый короткий тест на интеллект Задача Массачусетского профессора

Самый хитрый метод доказательства в математике

Самый хитрый метод доказательства в математике

Как происходит модернизация остаточных соединений [mHC]

Как происходит модернизация остаточных соединений [mHC]

Разведчик о том, как использовать людей

Разведчик о том, как использовать людей

Formal Verification-I

Formal Verification-I

15. Dynamic Programming, Part 1: SRTBOT, Fib, DAGs, Bowling

15. Dynamic Programming, Part 1: SRTBOT, Fib, DAGs, Bowling

Proof complexity as a computational lens lecture 13: Space complexity; resolution space vs. width

Proof complexity as a computational lens lecture 13: Space complexity; resolution space vs. width

Если у тебя спросили «Как твои дела?» — НЕ ГОВОРИ! Ты теряешь свою силу | Еврейская мудрость

Если у тебя спросили «Как твои дела?» — НЕ ГОВОРИ! Ты теряешь свою силу | Еврейская мудрость

Proof complexity as a computational lens lecture 19: Polynomial calculus & roots of unity encodings

Proof complexity as a computational lens lecture 19: Polynomial calculus & roots of unity encodings

Proof complexity as a computational lens lecture 15: Supercritical size-space trade-offs

Proof complexity as a computational lens lecture 15: Supercritical size-space trade-offs

Проблема выполнимости и SAT находится в NP

Проблема выполнимости и SAT находится в NP

Упс 25: Пожелания к формату VeriPB: обновление (Даниэль Ле Берр)

Упс 25: Пожелания к формату VeriPB: обновление (Даниэль Ле Берр)

Как вылечить БЕЗ операций Близорукость,Дальнозоркость,Астигматизм,Косоглазие.Упражнения проф.Жданова

Как вылечить БЕЗ операций Близорукость,Дальнозоркость,Астигматизм,Косоглазие.Упражнения проф.Жданова

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]