ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

WTF is a DFA Computation?

Автор: Easy Theory

Загружено: 2020-05-26

Просмотров: 5561

Описание: Here we go over the concept of a DFA computation, which can be a bit daunting. The idea is to record the states of the DFA one at a time as the string is being read. Instead of thinking about a set of states visited (which cannot distinguish what the string is), the sequence of states can actually tell us quite a bit about what the DFA did on the input string. I give some examples of computations on a given DFA, as well as some definitions that relate to strings.

Contribute:
Patreon:   / easytheory  
Discord:   / discord  

Live Streaming (Saturdays, Sundays 2PM GMT):
Twitch:   / easytheory  
(Youtube also)
Mixer: https://mixer.com/easytheory

Social Media:
Facebook Page:   / easytheory  
Facebook group:   / easytheory  
Twitter:   / easytheory  

Merch:
Language Hierarchy Apparel: https://teespring.com/language-hierar...
Pumping Lemma Apparel: https://teespring.com/pumping-lemma-f...

If you like this content, please consider subscribing to my channel:    / @easytheory  

▶ADDITIONAL QUESTIONS◀
1. If the DFA has n states, what if the input string has length n?
2. Can you determine a necessary and sufficient condition for a DFA to accept an infinite number of strings?

▶SEND ME THEORY QUESTIONS◀
[email protected]

▶ABOUT ME◀
I am a professor of Computer Science, and am passionate about CS theory. I have taught over 12 courses at Arizona State University, as well as Colgate University, including several sections of undergraduate theory.

▶ABOUT THIS CHANNEL◀
The theory of computation is perhaps the fundamental theory of computer science. It sets out to define, mathematically, what exactly computation is, what is feasible to solve using a computer, and also what is not possible to solve using a computer. The main objective is to define a computer mathematically, without the reliance on real-world computers, hardware or software, or the plethora of programming languages we have in use today. The notion of a Turing machine serves this purpose and defines what we believe is the crux of all computable functions.

This channel is also about weaker forms of computation, concentrating on two classes: regular languages and context-free languages. These two models help understand what we can do with restricted means of computation, and offer a rich theory using which you can hone your mathematical skills in reasoning with simple machines and the languages they define.

However, they are not simply there as a weak form of computation--the most attractive aspect of them is that problems formulated on them are tractable, i.e. we can build efficient algorithms to reason with objects such as finite automata, context-free grammars and pushdown automata. For example, we can model a piece of hardware (a circuit) as a finite-state system and solve whether the circuit satisfies a property (like whether it performs addition of 16-bit registers correctly). We can model the syntax of a programming language using a grammar, and build algorithms that check if a string parses according to this grammar.

On the other hand, most problems that ask properties about Turing machines
are undecidable. This Youtube channel will help you see and prove that several tasks involving Turing machines are unsolvable---i.e., no computer, no software, can solve it. For example, you will see that there is no software that can check whether a
C program will halt on a particular input. To prove something is possible is, of course, challenging. But to show something is impossible is rare in computer
science, and very humbling.

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
WTF is a DFA Computation?

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

What are the languages of DFAs?

What are the languages of DFAs?

Введение в теорию графов: перспектива компьютерной науки

Введение в теорию графов: перспектива компьютерной науки

How do we formally define a DFA?

How do we formally define a DFA?

Turing Machines (TMs) - Easy Theory

Turing Machines (TMs) - Easy Theory

Топ-блиц! 💥 Титульный вторник 3.02.2026 🎤 Шипов, Филимонов ♕ Шахматы

Топ-блиц! 💥 Титульный вторник 3.02.2026 🎤 Шипов, Филимонов ♕ Шахматы

Context-Free Grammars (CFGs) - Easy Theory

Context-Free Grammars (CFGs) - Easy Theory

Fourteen DFA Examples? No Problem!

Fourteen DFA Examples? No Problem!

We still don't understand magnetism

We still don't understand magnetism

Моделирование Монте-Карло

Моделирование Монте-Карло

Крупнейшая образовательная катастрофа 20 века в США

Крупнейшая образовательная катастрофа 20 века в США

Для Чего РЕАЛЬНО Нужен был ГОРБ Boeing 747?

Для Чего РЕАЛЬНО Нужен был ГОРБ Boeing 747?

Simple Machines, a How-To

Simple Machines, a How-To

Опасная установка точильного станка в 1971 году

Опасная установка точильного станка в 1971 году

What are Grammars (in Theory of Computation)?

What are Grammars (in Theory of Computation)?

ТИТУЛЬНЫЙ ВТОРНИК! Играет СЕРГЕЙ ЖИГАЛКО и ТОПЫ МИРА! Шахматы. На Chess.com

ТИТУЛЬНЫЙ ВТОРНИК! Играет СЕРГЕЙ ЖИГАЛКО и ТОПЫ МИРА! Шахматы. На Chess.com

Арестович: Почему Трамп не может добиться перемирия? Дневник войны. Сбор для военных👇

Арестович: Почему Трамп не может добиться перемирия? Дневник войны. Сбор для военных👇

Infinite DFAs (and showing it is decidable!)

Infinite DFAs (and showing it is decidable!)

What is a Regular Language?

What is a Regular Language?

Преобразование NFA в DFA (пример построения Powerset/Subset)

Преобразование NFA в DFA (пример построения Powerset/Subset)

Быстрое преобразование Фурье (БПФ): самый гениальный алгоритм?

Быстрое преобразование Фурье (БПФ): самый гениальный алгоритм?

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]