Third Cumulant of a Linearly Transformed Binomial Variable | UPSC ISS 2023 Paper-1 | Problem-11
Автор: RitwikMath
Загружено: 2025-10-26
Просмотров: 79
Описание:
In this video, we calculate the third cumulant of a random variable \(Y = 10 - X\), where \(X\) follows a binomial distribution with parameters \(n=10\) and \(p=\frac{1}{4}\). We use the formula for the third cumulant of a binomial variable and apply the linear transformation property of cumulants to find the cumulant of \(Y\). The final value is \(-\frac{15}{16}\), demonstrating how cumulants transform under linear changes. This video is useful for UPSC aspirants and students studying advanced probability and statistics.
#upsc #upscmotivation #upscaspirants #upscpreparation #civilservices #civilservicesexam #upscexam #upscstudy #upscstudents #ias #ips #ifs #studywithme #statistics #statisticsexplained #statisticalmethods #indianstatisticalservice #probability #mathematics #maths #conceptclarity #learningmadeasy #education #ytshorts #statisticsoptional #thirdcumulant #binomialdistribution #lineartransformation #ritwikmath
Повторяем попытку...
Доступные форматы для скачивания:
Скачать видео
-
Информация по загрузке: