ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

RAG Explained (EP9) : The Iterative Playbook (Meta Filters, Context Injection, Re-Ranking)

RAG

Retrieval Augmented Generation

retrieval augmented generation

vector database

embeddings

semantic search

re-ranking

reranking

meta filtering

context injection

value extraction

information retrieval

knowledge base

document retrieval

prompt engineering

local LLMs

vector store

vector indexing

chunking strategies

query understanding

pipeline design

production AI

AI engineering

GenAI

Large Language Models

LLMs

NLP

AI podcast

AIBROS

Rohan

Nisaar

Автор: AI Bros Podcast

Загружено: 2025-11-07

Просмотров: 19

Описание: RAG isn’t a one-and-done trick—it’s an iterative value-extraction loop. In this episode, Rohan and Nisaar break down how Retrieval-Augmented Generation really works in production: retrieval + generation, context injection, meta filtering by titles and embeddings, insertion-time filters, and semantic re-ranking. We also touch on local models (JMA), using real-world financial slices (cash flow swings, TTM views) as a thinking tool for evaluating pipelines, and how to design RAG systems that stay robust as your corpus scales.

What you’ll learn

Why RAG is an iterative process (not just a single query)
How meta filters (titles, doc types) and embedding filters work together
Context injection patterns that boost answer quality
Insertion-time filtering + edge numbers to keep indexes clean
When to re-rank and how to handle “no hits” gracefully

Timestamps
00:00 Intro: What is RAG and why it matters (retrieval ➜ generation)
00:06 The iterative value-extraction loop (accuracy through repetition)
04:50 Reading results like an engineer: quarterly deltas & cash-flow swings
05:37 Local models that work (JMA) + TTM metrics as a lens for performance
07:45 From extraction to vectors: storing text & visuals for fast Q&A
09:49 Meta filtering by titles/doc types for real-time retrieval
11:10 Context injection + pipeline backup & clean response formats
13:22 Embedding-level meta filters & handling knowledge cutoff/no-hits
14:02 Insertion-time filters (titles/edge numbers) + semantic re-ranking
15:30 Wrap-up & key takeaways

Tags (copy-paste, comma-separated)
RAG, Retrieval Augmented Generation, retrieval augmented generation, vector database, embeddings, semantic search, re-ranking, reranking, meta filtering, context injection, value extraction, information retrieval, knowledge base, document retrieval, prompt engineering, local LLMs, JMA model, vector store, vector indexing, chunking strategies, query understanding, pipeline design, knowledge cutoff, production AI, AI engineering, GenAI, Large Language Models, LLMs, NLP, AI podcast, AIBROS, Rohan, Nisaar

Hashtags
#RAG #GenerativeAI #LLM #AIEngineering #VectorDatabases #SemanticSearch #OpenSource #MachineLearning #AIBROS #TechPodcast

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
RAG Explained (EP9) : The Iterative Playbook (Meta Filters, Context Injection, Re-Ranking)

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]