ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

LMCache + vLLM: How to Serve 1M Context for Free

Автор: The Economic Architect

Загружено: 2025-11-24

Просмотров: 20

Описание: 🤯 The KV-Cache Hack: LMCache + vLLM Serves Massive Context for Free
If you are running large-scale LLM inference, you are burning GPU money re-processing the same PDF for every chat message. This expensive redundancy occurs because traditional LLM inference engines treat each query independently and discard intermediate Key-Value (KV) cache states after completion.
LMCache eliminates this redundancy. It is the first open-source KV caching layer designed for enterprise-scale LLM inference, specifically enabling efficient offloading and sharing of the KV cache.
The core research behind LMCache decouples the KV cache from the GPU. It supports a multi-tier storage hierarchy, allowing KV caches to be stored in cheaper tiers like CPU DRAM, local disk, or remote backends (such as Redis or Mooncake).
This system supports cross-query cache reuse (context caching). This means you can pre-load heavy contexts, such as large documents (like manuals or codebases), and efficiently share them across thousands of users or concurrent sessions without re-computing tokens. When a chunk is reused, LMCache injects the cached KV values directly, skipping the costly LLM forward pass.
By implementing optimizations like asynchronous chunked I/O and layer-wise pipelining, LMCache significantly lowers Time-to-First-Token (TTFT) and overall GPU resource consumption during the prefill phase. Combining LMCache with vLLM has been shown to achieve up to 15x improvement in throughput and substantial reductions in latency across workloads like multi-round question answering and document analysis.
This architectural hack supports extreme context lengths, such as enabling the serving of the LLaMA-7B model with a context length of 1 million tokens on a single A100-80GB GPU by drastically reducing the KV cache memory footprint.
Stop calculating knowledge repeatedly. Start caching it intelligently.

lmcache : https://lmcache.ai/

vllm : https://docs.vllm.ai/en/latest/exampl...

#LLM #AIOps #vLLM #KVCache #LMCache #GPUOptimization #CostSavings

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
LMCache + vLLM: How to Serve 1M Context for Free

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]