ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Data Analytics Powerhouse

Автор: Data&AI

Загружено: 2025-11-01

Просмотров: 1

Описание: Here’s a clear, polished description you can use for “Pillar 6: Data Integration & Interoperability”:

Pillar 6: Data Integration & Interoperability

Overview:
This pillar ensures seamless, secure, and scalable connectivity across systems, applications, and data sources. By combining an API‑first approach with event-driven patterns and robust data pipelines, the organization achieves real-time data flow, consistent interfaces, and resilient integrations across both modern and legacy environments.

Who:
Integration Architects: Define integration strategy, API specifications, messaging patterns, and connectivity standards.
API Developers: Build and maintain RESTful APIs and GraphQL endpoints, with comprehensive documentation and governance.
Data Engineers: Implement real-time synchronization, ETL/ELT pipelines, and data virtualization to unify and operationalize data.

What:
Comprehensive Integration Framework: Supports multiple connectivity patterns (synchronous APIs, asynchronous events, batch pipelines) to meet diverse business and technical needs.
API Management: Consistent API design, lifecycle management, documentation, versioning, and security across REST and GraphQL.
Real-time Synchronization: Change data capture (CDC) and event streaming enable low-latency, high-throughput data movement.
Legacy Integration: ETL/ELT processes and data virtualization bridge older systems with modern platforms without disruptive rewrites.

How:
Architecture: API-first design underpinned by event-driven integration and an enterprise service bus (ESB) where appropriate for routing, transformation, and orchestration.
Platforms and Tools:
API Gateway: Kong, Apigee, or Azure API Management for authentication, rate limiting, monitoring, and developer portals.
Event Streaming: Confluent Kafka, Apache Pulsar, or AWS Kinesis for durable, scalable stream processing and pub/sub.
Data Pipelines: ETL/ELT with Informatica PowerCenter, Talend, or Fivetran to ingest, transform, and load data across sources.
Practices:
Standardized API specifications (OpenAPI/Swagger, GraphQL schemas) and messaging contracts (Avro/JSON/Protocol Buffers).
Versioning, backward compatibility, and deprecation policies to minimize integration friction.
Security by design: OAuth2/OIDC, mTLS, secrets management, and fine-grained access controls.
Observability: Centralized logging, distributed tracing, metrics, and SLAs across APIs and data streams.
Governance: Cataloging, lineage, and compliance aligned to data privacy and regulatory requirements.

Outcomes:
Faster integration delivery and reduced coupling between systems.
Reliable real-time data availability for analytics and operations.
Consistent developer experience and reusable integration assets.
Future-proof connectivity that accommodates new services and legacy modernization.

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Data Analytics Powerhouse

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]