ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

MMM with PyMC-Marketing and Databricks | Corey Abshire | William Dean | Thomas Wiecki

Автор: PyMC Labs

Загружено: 2025-02-06

Просмотров: 1219

Описание: In this event, we will discuss how customers can use Databricks to develop and productionize MMM models for their companies. By combining Databricks capabilities in consolidating, organizing and securing data pipelines and manage ML models and pipelines with PyMC-Marketing’s easy to use modelling capabilities, companies can bring develop sophisticated MMM models to help understand, optimize and forecast their marketing budgets.

💼 About the speaker:
1. Corey Abshire, Senior AI Specialist Solutions Architect, DataBricks
Corey Abshire is a Senior Specialist Solutions Architect focused on GenAI and ML in Communications, Media and Entertainment. Prior to Databricks, Corey was a Principal Machine Learning Engineer at Cummins Inc., working on critical data science and machine learning initiatives for quality, engineering, and manufacturing. He holds an M.S. in data science from Indiana University in Bloomington, IN.
🔗 Connect with Corey:
👉 Linkedin:   / coreyabshire  

2. Will Dean, Principal Data Scientist, PyMC Labs
Will Dean is a Statistician and Data Scientist with experience in geospatial and user analytics. He is passionate about Bayesian methods and using data visualization to tell a story. He is interested in software design and how it can make data problems easier and more enjoyable to solve.
🔗 Connect with Will Dean:
👉 Linkedin:   / williambdean  
👉 Github: https://github.com/wd60622/

💼 About the Host:
Thomas Wiecki (Founder of PyMC Labs)
Dr. Thomas Wiecki is an author of PyMC, the leading platform for statistical data science. To help businesses solve some of their trickiest data science problems, he assembled a world-class team of Bayesian modelers and founded PyMC Labs -- the Bayesian consultancy. He did his PhD at Brown University studying cognitive neuroscience.
🔗 Connect with Thomas:
👉 Linkedin:   / twiecki  
👉 Website: https://www.pymc-labs.com/, https://twiecki.io/
👉 GitHub: https://github.com/twiecki
👉 Twitter:   / twiecki  

🔗 Connecting with PyMC Labs:
🌐 Website: https://www.pymc-labs.com/
👥 LinkedIn:   / pymc-labs  
🐦 Twitter:   / pymc_labs  
🎥 YouTube:    / pymclabs  
🤝 Meetup: https://www.meetup.com/pymc-labs-onli...


00:00:00 Introduction & Speaker Introductions
00:03:26 What is Databricks
00:06:12 Why MMM
00:11:57 MMM with PyMC-Marketing on Databricks
00:21:43 PyMC-Marketing MLFlow Auto logging
00:26:45 Data-centric ML platform
00:33:28 A closer look
00:35:24 Lakehouse Monitoring
00:38:06 Demo
00:45:20 - Q&A and Closing Remarks

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
MMM with PyMC-Marketing and Databricks | Corey Abshire | William Dean | Thomas Wiecki

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

Твой N8N Никогда Не Будет Прежним с Gemini CLI

Твой N8N Никогда Не Будет Прежним с Gemini CLI

Kubernetes — Простым Языком на Понятном Примере

Kubernetes — Простым Языком на Понятном Примере

Bolt's Evolution towards MMM with PyMC with Carlos Agostini

Bolt's Evolution towards MMM with PyMC with Carlos Agostini

#125 Bayesian Sports Analytics & The Future of PyMC, with Chris Fonnesbeck

#125 Bayesian Sports Analytics & The Future of PyMC, with Chris Fonnesbeck

Краткий обзор новой версии n8n 2.0  🚀

Краткий обзор новой версии n8n 2.0 🚀

Full Python Tutorial: Bayesian Marketing Mix Modeling (MMM) SPECIAL GUEST: PyMC Labs

Full Python Tutorial: Bayesian Marketing Mix Modeling (MMM) SPECIAL GUEST: PyMC Labs

LLM fine-tuning или ОБУЧЕНИЕ малой модели? Мы проверили!

LLM fine-tuning или ОБУЧЕНИЕ малой модели? Мы проверили!

[114] Getting Started with PyMC (Chris Fonnesbeck)

[114] Getting Started with PyMC (Chris Fonnesbeck)

Bayesian Vs Causal Modeling | Aleksander Molak, Thomas Wiecki, Carlos Trujillo | PyMC Labs

Bayesian Vs Causal Modeling | Aleksander Molak, Thomas Wiecki, Carlos Trujillo | PyMC Labs

Databricks Asset Bundles: A Unifying Tool for Deployment on Databricks

Databricks Asset Bundles: A Unifying Tool for Deployment on Databricks

A Bayesian Approach to Media Mix Modeling (Michael Johns & Zhenyu Wang)

A Bayesian Approach to Media Mix Modeling (Michael Johns & Zhenyu Wang)

Time Series Analysis with Bayesian State Space Models in PyMC | Jesse Grabowski | PyMC Labs

Time Series Analysis with Bayesian State Space Models in PyMC | Jesse Grabowski | PyMC Labs

Democratizing Bayesian Modeling with Insight Agents: A Case Study on AI-Assisted MMM

Democratizing Bayesian Modeling with Insight Agents: A Case Study on AI-Assisted MMM

Как научиться читать мысли по руке

Как научиться читать мысли по руке

Превратите ЛЮБОЙ файл в знания LLM за СЕКУНДЫ

Превратите ЛЮБОЙ файл в знания LLM за СЕКУНДЫ

Christian Luhmann - PyMC-Marketing: Customer and Marketing Analytics the Easy Way | PyData NYC 2024

Christian Luhmann - PyMC-Marketing: Customer and Marketing Analytics the Easy Way | PyData NYC 2024

Probabilistic Programming and Bayesian Modeling with PyMC3 - Christopher Fonnesbeck

Probabilistic Programming and Bayesian Modeling with PyMC3 - Christopher Fonnesbeck

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

Thomas Wiecki's Guide To Causal Inference Using PyMC Ep 1 | CausalBanditsPodcast.com

Thomas Wiecki's Guide To Causal Inference Using PyMC Ep 1 | CausalBanditsPodcast.com

Claude Code: полный гайд по AI-кодингу (хаки, техники и секреты)

Claude Code: полный гайд по AI-кодингу (хаки, техники и секреты)

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]