ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Converting Complex Number from rectangular form into Polar form & Euler's form or Exponential form

Polar form

Circular form

Euler's form

Exponential form

Complex numbers

Modulus

Angle

reference angle

Amplitude

argument

tindan

tindanious ibm

tindanious science and math tutorials

ibm

argand diagram

quadrant

Автор: TINDANIOUS Math & Science Tutorials

Загружено: 2025-05-20

Просмотров: 53

Описание: Definition:
A complex number is a number that can be expressed in the form:
z = a + bi
\where:
1. a is the real part
2. b is the imaginary part
3. i is the imaginary unit, satisfying i^2 = -1
Components:
1. Real part (a): The real component of the complex number.
2. Imaginary part (b): The imaginary component of the complex number.

Operations:
1. Addition: (a + bi) + (c + di) = (a + c) + (b + d)i
2. Subtraction: (a + bi) - (c + di) = (a - c) + (b - d)i
3. Multiplication: (a + bi)(c + di) = (ac - bd) + (ad + bc)i
4. Division: (a + bi) / (c + di) = ((ac + bd) / (c^2 + d^2)) + ((bc - ad) / (c^2 + d^2))i

Applications:
1. Algebra: Solving equations with complex roots.
2. Geometry: Representing points in the complex plane.
3. Calculus: Analyzing functions with complex variables.
4. Engineering: Applications in electrical engineering, signal processing, and control systems.

Key Concepts:
1. Complex conjugate: The complex conjugate of z = a + bi is z̄ = a - bi.
2. Modulus: The modulus of z = a + bi is |z| = √(a^2 + b^2).
3. Argument: The argument of z = a + bi is the angle θ = arctan(b/a).

Ways of representing Complex Numbers:
1.Rectangular Form or cartesian form
2.Polar form or circular form
3.Euler's form or exponential form

A complex number z can be expressed in rectangular form as:
z = a + bi
where:
1. a is the real part
2. b is the imaginary part
3. i is the imaginary unit, satisfying i^2 = -1

Polar Form:
A complex number z can also be expressed in polar form as:
z = r(cosθ + isinθ)
where:
1. r is the modulus (magnitude) of z
2. θ is the argument (angle) of z

Exponential or Euler's Form:
Using Euler's formula, e^(iθ) = cosθ + isinθ, complex numbers can be expressed in exponential form as:
z = re^(iθ)


Applications:
Complex numbers have numerous applications in:
1. Electrical engineering: AC circuits, signal processing
2. Control systems: Stability analysis, controller design
3. Signal processing: Filter design, modulation analysis
4. Mathematics: Solving equations, algebraic manipulations

Key Concepts:
1. Complex conjugate: z̄ = a - bi
2. Modulus: |z| = √(a^2 + b^2)
3. Argument: θ = arctan(b/a)

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Converting Complex Number from rectangular form into Polar form & Euler's form or Exponential form

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

The Argand Diagram(2), Euler's formular & Polar form

The Argand Diagram(2), Euler's formular & Polar form

Examination Practice Questions (1)

Examination Practice Questions (1)

Examination Practice Questions (2)

Examination Practice Questions (2)

Implicit Differentiation

Implicit Differentiation

Class 11th physics | Mathematical tools | Differentiation | Physics | Part 1 💯📚📖

Class 11th physics | Mathematical tools | Differentiation | Physics | Part 1 💯📚📖

Differentiation Of Trigonometry Functions

Differentiation Of Trigonometry Functions

Increasing & Decreasing Functions

Increasing & Decreasing Functions

Comedy Club: Курсы альфа-самца | Кравец, Шальнов, Бутусов @ComedyClubRussia

Comedy Club: Курсы альфа-самца | Кравец, Шальнов, Бутусов @ComedyClubRussia

Похудей на 45 КГ, Выиграй $250,000!

Похудей на 45 КГ, Выиграй $250,000!

e^(iπ) in 3.14 minutes, using dynamics | DE5

e^(iπ) in 3.14 minutes, using dynamics | DE5

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]