ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

What Dimensionality Reduction Techniques Handle Non-linear Data? - AI and Machine Learning Explained

A I

Autoencoders

Data Science

Data Visualization

Dimensionality Reduction

Isomap

Kernel P C A

L L E

Machine Learning

Non Linear Data

U M A P

t S N E

Автор: AI and Machine Learning Explained

Загружено: 2025-10-28

Просмотров: 1

Описание: What Dimensionality Reduction Techniques Handle Non-linear Data? Are you curious about how machines can simplify complex data that twists and curves in unexpected ways? In this video, we'll explore various non-linear dimensionality reduction techniques that help visualize and analyze intricate data structures. We'll start by explaining why linear methods often fall short when dealing with curved or tangled data. Then, we'll introduce popular approaches like Kernel PCA, t-SNE, UMAP, Isomap, LLE, and autoencoders, highlighting how each method captures the true shape of complex datasets. You'll learn how Kernel PCA uses the kernel trick to map data into higher dimensions, making non-linear patterns easier to identify. We'll also discuss how t-SNE focuses on preserving local relationships to visualize clusters effectively, and how UMAP balances local and global data structure for faster, scalable results. Additionally, you'll discover how Isomap measures geodesic distances on curved surfaces, and how LLE unfolds twists and turns into simpler forms. Finally, we'll cover how neural network-based autoencoders can model highly complex data structures. Whether you're working in artificial intelligence, machine learning, or data visualization, understanding these techniques is essential for making sense of complex datasets. Join us to learn how these tools can improve your data analysis and AI models. Don't forget to subscribe for more insights on AI and machine learning!

⬇️ Subscribe to our channel for more valuable insights.

🔗Subscribe: https://www.youtube.com/@AI-MachineLe...

#DimensionalityReduction #MachineLearning #AI #DataVisualization #NonLinearData #KernelPCA #tSNE #UMAP #Isomap #LLE #Autoencoders #DataScience #ArtificialIntelligence #MLTechniques #DataAnalysis

About Us: Welcome to AI and Machine Learning Explained, where we simplify the fascinating world of artificial intelligence and machine learning. Our channel covers a range of topics, including Artificial Intelligence Basics, Machine Learning Algorithms, Deep Learning Techniques, and Natural Language Processing. We also discuss Supervised vs. Unsupervised Learning, Neural Networks Explained, and the impact of AI in Business and Everyday Life.

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
What Dimensionality Reduction Techniques Handle Non-linear Data? - AI and Machine Learning Explained

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]