What is the final expression for the tensor product when computed in terms of the magnetic field com
Автор: Cross-Disciplinary Perspective(CDP)
Загружено: 2025-10-29
Просмотров: 1
Описание:
Mathematical objects: Tensor Symmetry and Field Component Expression.
Question: What is the final expression for the tensor product when computed in terms of the magnetic field components?
Answer: The final expression for the tensor is the difference between the product of the magnetic field magnitude squared and the Kronecker delta, and the outer product of the magnetic field vector with itself. The result is derived using the definition of the magnetic field tensor and the vector identity for the product of two Levi-Civita symbols.
Proof and Derivation: https://viadean.notion.site/Tensor-An...
Audio Overview: • Maxwell Stress Tensor Rewritten The Relati...
Повторяем попытку...
Доступные форматы для скачивания:
Скачать видео
-
Информация по загрузке: