Equilateral Triangle Area Problem! 📐 OTET 2024 Math Sujit Sir
Автор: Sujit Sir Classes
Загружено: 2025-11-14
Просмотров: 32
Описание:
Equilateral Triangle Area Problem! 📐 OTET 2024 Math Sujit Sir #shorts
Sujit Sir solves the OTET 2024 Paper 2 Math question in this short!
► Question 99: On decreasing the sides of an equilateral triangle by 4 cm, its area decreases by 24√3 cm². What is the length of the sides of the triangle? (A) 14 cm (B) 12 cm (C) 16 cm (D) 10 cm
► Solution: (A) 14 cm
This is a classic mensuration problem from the OTET 2024 exam. Sujit Sir shows you the fastest way to solve it! Don't get stuck in complicated calculations. Learn the direct formula and algebraic trick to find the answer in seconds.
Step-by-Step Solution:
1. Let the original side of the equilateral triangle be 's'. 2. The original area (A1) is = (s²√3) / 4 3. The new side is 's - 4'. 4. The new area (A2) is = ((s - 4)²√3) / 4
5. The problem states the decrease in area (A1 - A2) is 24√3. (s²√3) / 4 - ((s - 4)²√3) / 4 = 24√3
6. We can cancel √3 from all terms: s²/4 - (s - 4)²/4 = 24
7. Multiply all terms by 4 to remove the denominator: s² - (s - 4)² = 96
8. Now, use the "difference of squares" formula (a² - b² = (a+b)(a-b)): a = s b = (s - 4)
[s + (s - 4)] * [s - (s - 4)] = 96 [2s - 4] * [s - s + 4] = 96 [2s - 4] * [4] = 96
9. Divide by 4: 2s - 4 = 24 2s = 28 s = 14 cm
The original side length was 14 cm!
➡️ Like, Share, and Subscribe to Sujit Sir Classes! ➡️ Comment below if you have any doubts! ➡️ Join our Telegram Channel for more notes & updates: [Your Telegram Link Here] ➡️ Full OTET PYQ Solution Video: [Your Full Video Link Here]
#otet #otet2024 #otetmath #sujitsirclasses #mathtricks #geometry #mensuration #equilateraltriangle #triangle #otetpyq #odishatet #shorts
Повторяем попытку...
Доступные форматы для скачивания:
Скачать видео
-
Информация по загрузке: