Obstacle Avoidance using Learning Model Predictive Control
Автор: Ugo Rosolia
Загружено: 2018-03-01
Просмотров: 1279
Описание:
This project builds on the Learning Model Predictive Control (LMPC) framework applied to the autonomous racing problem. The controller uses the data from the previous lap to learn how to perform overtaking maneuvers. The data of the from the previous lap are used to build a collision free safe set which allows the controller to drive safely around the track avoiding obstacles and improving the lap time.
The proposed strategy has been tested on the Berkeley Autonomous Race Car (BARC) platform. Experimental results show that the controller is able to lear the overtaking maneuver improving the lap time. It is interesting to notice that the local information about the obstacle position influence the vehicles behavior in the whole track.
Credits:
MS Thesis of Francesco Ricciuti
Supervisor:
Ugo Rosolia
Jon Gonzales
Повторяем попытку...
Доступные форматы для скачивания:
Скачать видео
-
Информация по загрузке: