ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

xGW-GAT: An Explainable Geometric-Weighted Graph Attention Network for Gait Impairment | MICCAI 2023

MICCAI 2023

MICCAI

Graph Neural Networks

Gait Impairment

Explainability

PyTorch Geometric

Geometric Deep Learning

Classification

Connectome

fMRI

Brain Networks

Neuroimaging

SPD

Riemannian Manifold

Автор: Favour Nerrise

Загружено: 2023-10-25

Просмотров: 110

Описание: xGW-GAT: An Explainable Geometric-Weighted Graph Attention Network for Identifying Functional Networks Associated with Gait Impairment

One of the hallmark symptoms of Parkinson's Disease (PD) is the progressive loss of postural reflexes, which eventually leads to gait difficulties and balance problems. Identifying disruptions in brain function associated with gait impairment could be crucial in better understanding PD motor progression, thus advancing the development of more effective and personalized therapeutics. In this work, we present an explainable, geometric, weighted-graph attention neural network (xGW-GAT) to identify functional networks predictive of the progression of gait difficulties in individuals with PD. xGW-GAT predicts the multi-class gait impairment on the MDS Unified PD Rating Scale (MDS-UPDRS). Our computational- and data-efficient model represents functional connectomes as symmetric positive definite (SPD) matrices on a Riemannian manifold to explicitly encode pairwise interactions of entire connectomes, based on which we learn an attention mask yielding individual- and group-level explainability. Applied to our resting-state functional MRI (rs-fMRI) dataset of individuals with PD, xGW-GAT identifies functional connectivity patterns associated with gait impairment in PD and offers interpretable explanations of functional subnetworks associated with motor impairment. Our model successfully outperforms several existing methods while simultaneously revealing clinically relevant connectivity patterns. The source code is available here: https://github.com/favour-nerrise/xGW-GAT .

Favour Nerrise (1), Qingyu Zhao (2), Kathleen L. Poston (3), Kilian M. Pohl (1,2), Ehsan Adeli (2)
(1) Department of Electrical Engineering, Stanford University, Stanford, CA, USA
(2) Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA
(3) Dept. of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
xGW-GAT: An Explainable Geometric-Weighted Graph Attention Network for Gait Impairment | MICCAI 2023

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]