ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Time-Series Forecasting in Python: Predict Daily Restaurant Customers (Part 3)

machine learning

time series analysis

data science

data science tutorial for beginners

edureka data science

data science roadmap

forecast daily customer

python project

time series analysis with python

what is data science

data science python

data science training

learn data science

data science tutorial videos

data science edureka

data science course

data science introduction

data science certification

Автор: Himat Academy

Загружено: 2025-10-18

Просмотров: 54

Описание: Video 3 — Part 3: Random Forest, Linear Regression, LSTM & Feature Refinement for Peak Accuracy

Overview
We advance the forecasting pipeline in JupyterLab (online) by benchmarking three additional models—Random Forest, Linear Regression, and LSTM (Long Short-Term Memory)—against our prior XGBoost baseline. Using the top-performing features identified earlier, we refine model inputs to maximize predictive power and reduce forecast error. Each model is trained on the same time-aware split to ensure fairness and comparability. Performance is assessed rigorously using RMSE, MSE, and MAE, with direct comparisons and visual diagnostics to confirm gains in generalization and stability.

Watch the series
Paper Review (context first):    • Review Research Paper: Forecast Restaurant...  

Part 1 — Data Prep & Features:    • Time-Series Forecasting with XGBoost in Py...  

Part 2 — XGBoost & Evaluation:    • How We Beat the World's Best Forecasters U...  

This video — Part 3 (Model Comparisons & Feature Refinement):    / replace_with_part3  

What you’ll learn

How to train and tune Random Forest, Linear Regression, and LSTM for time-series forecasting

Proper use of best features (lags, rolling stats, autocorrelation, holidays, weather) to boost accuracy

Comparative evaluation using RMSE, MSE, and MAE across all models

How feature optimization impacts performance across linear, ensemble, and neural models

Visualization of model residuals and error trends to identify bias or underfitting

Final model ranking and interpretation of trade-offs between accuracy, complexity, and interpretability

Data & Features (context)
Daily customers (2019–2024), self-service restaurant
Lags (1/7/14/28), rolling stats, exponential smoothing, autocorrelation
Calendar & holiday effects (before/after), weather enrichment

Chapters
00:00 Recap & objective (why multiple models)
03:15 Random Forest: setup & training
07:20 Linear Regression: baseline comparison
10:45 LSTM: architecture & sequence design
14:30 Feature optimization & top-signal subset
17:00 RMSE/MSE/MAE comparison & visual analysis
20:00 Summary: accuracy gains, final takeaways

Tags
#randomforest #linearregression #lstm #timeseries #forecasting #python #machinelearning #demandforecasting #restaurant #pandas #tensorflow #scikitlearn #rmse #mae #mse #jupyterlab

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Time-Series Forecasting in Python: Predict Daily Restaurant Customers (Part 3)

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]