ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Euler's Product for the Zeta function via Boxes II | Math Foundations 241 | N J Wildberger

Автор: Insights into Mathematics

Загружено: 2024-07-03

Просмотров: 2465

Описание: We continue exploring elementary connections between Box Arithmetic and Number theory, centered on Euler's product formula for the Zeta function. The Fundamental Identity of Arithmetic that we introduced in our last video plays a big role. But now we introduce some interesting variants: when we replace the numbers occurring in this Fundamental Identity with suitable powers of them, including also negative powers, and then apply the Sum operator as before.

What makes this works is a crucial multiplicative property of taking powers.

We make contact with another of Euler's famous formulas, for the sum of the reciprocal squares of natural numbers.

In this talk, we necessarily extend our usual finite careful mathematics with unbounded analogs. But that means that we need to be mindful of the exact meaning of the statements we make. Our general orientation is that the meanings of expression can be reduced to finite expressions by using the natural ordering of the Natural numbers to apply truncation consistently.

Video Contents :
00:00 Introduction
2:42 Powers And The Caret Operation
5:25 Applying f To The FIA
10:45 A Variant ( replacing with cubes)
13:25 Another Variant (replacing with reciprocals)
17:51 Suggests An Identity
19:51 Squared Reciprocals
21:39 Examples
24:32 A calculation


***********************
My research papers can be found at my Research Gate page, at https://www.researchgate.net/profile/...

My blog is at http://njwildberger.com/, where I will discuss lots of foundational issues, along with other things.

Online courses are being developed at openlearning.com. The first one, already underway, is Algebraic Calculus One at https://www.openlearning.com/courses/... Please join us for an exciting new approach to one of mathematics' most important subjects!

If you would like to support these new initiatives for mathematics education and research, please consider becoming a Patron of this Channel at Patreon,   / njwildberger   Your support would be much appreciated.

Here are the Insights into Mathematics Playlists:

   • Плейлист  
   • Плейлист  
   • Плейлист  
   • Плейлист  
   • Плейлист  
   • Плейлист  
   • Плейлист  
   • Плейлист  
   • Плейлист  
   • Плейлист  
   • Плейлист  
   • Плейлист  
   • Плейлист  
   • Плейлист  
   • Плейлист  
   • Плейлист  
   • Плейлист  
   • Плейлист  
   • Плейлист  
   • Плейлист  
   • Плейлист  

Here are the Wild Egg Maths Playlists (some available only to Members!)

   • Плейлист  
   • Плейлист  
   • Плейлист  
   • Плейлист  
   • Плейлист  
   • Плейлист  
   • Плейлист  
   • Плейлист  
   • Плейлист  
   • Плейлист  
   • Плейлист  
   • Плейлист  
   • Плейлист  
************************

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Euler's Product for the Zeta function via Boxes II | Math Foundations 241 | N J Wildberger

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

Multiplicative functions and Dirichlet series via Boxes | Math Foundations 242 | N J Wildberger

Multiplicative functions and Dirichlet series via Boxes | Math Foundations 242 | N J Wildberger

08  - Euler's Golden Bridge (Product Formula)

08 - Euler's Golden Bridge (Product Formula)

The Third Isomorphism Theorem | Algebra (10)

The Third Isomorphism Theorem | Algebra (10)

Euler's Product for the Zeta function via Boxes I | Math Foundations 240 | N J Wildberger

Euler's Product for the Zeta function via Boxes I | Math Foundations 240 | N J Wildberger

Curves in Modern Times | Algebraic Calculus One | Wild Egg

Curves in Modern Times | Algebraic Calculus One | Wild Egg

The Strangest Man Who Unified Physics (Paul Dirac)

The Strangest Man Who Unified Physics (Paul Dirac)

The

The "textbook exercise" on Euler characteristic | Euler characteristic #1

Let's crack the Riemann Hypothesis! | Sociology and Pure Mathematics | N J Wildberger

Let's crack the Riemann Hypothesis! | Sociology and Pure Mathematics | N J Wildberger

The hidden link between Prime Numbers and Euler's Number

The hidden link between Prime Numbers and Euler's Number

Центральный объект в математике! | Социология чистой математики | Н. Дж. Вильдбергер

Центральный объект в математике! | Социология чистой математики | Н. Дж. Вильдбергер

Sociology and Pure Maths

Sociology and Pure Maths

Точная формула для простых чисел: формула Вилланса

Точная формула для простых чисел: формула Вилланса

Multiplicative functions and Dirichlet Series via Boxes II| Math Foundations 243 | N J Wildberger

Multiplicative functions and Dirichlet Series via Boxes II| Math Foundations 243 | N J Wildberger

Q Series via Box Arithmetic | Math Foundations 239 | N J Wildberger

Q Series via Box Arithmetic | Math Foundations 239 | N J Wildberger

Математика Великой пирамиды | История математики (от древности до наших дней) 35 | Н. Дж. Уайлдергер

Математика Великой пирамиды | История математики (от древности до наших дней) 35 | Н. Дж. Уайлдергер

An Introduction to

An Introduction to "sequences" and discrete calculus | Algebraic Calculus One | Wild Egg

The Fundamental Theorem of Algebra: NOT! | Sociology and Pure Mathematics | N J Wildberger

The Fundamental Theorem of Algebra: NOT! | Sociology and Pure Mathematics | N J Wildberger

НЕПОМНЯЩИЙ ДЕЛАЕТ НЕВЕРОЯТНОЕ!!! ЯН НЕПОМНЯЩИЙ

НЕПОМНЯЩИЙ ДЕЛАЕТ НЕВЕРОЯТНОЕ!!! ЯН НЕПОМНЯЩИЙ

Quadrea, area and Archimedes' formula | Rational Trigonometry | N J Wildberger

Quadrea, area and Archimedes' formula | Rational Trigonometry | N J Wildberger

Physics Mini Lessons

Physics Mini Lessons

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]