Solve d³y/dx³ + 6d²y/dx² + 11dy/dx + 6y = 0 | Higher Order ODE | VTU Maths
Автор: Mathematics Tutor
Загружено: 2024-08-26
Просмотров: 13604
Описание:
📘 Solution of Higher Order Linear Differential Equation
Problem:
Solution of
d^3y/dx^3 + 6 d^2y/dx^2 + 11 dy/dx + 6y = 0
This video explains the solution of a third-order homogeneous linear differential equation with constant coefficients using the auxiliary (characteristic) equation method, which is a fundamental topic in Engineering Mathematics and VTU examinations.
📌 Syllabus Mapping (VTU)
2022 Scheme
BMATE301 / BEE301 – Module 1
Ordinary Differential Equations of Higher Order
BMATEC301 / BEC301 – Module 4
Ordinary Differential Equations of Higher Order
BMATM101 / BMATC101 – Module 4
2025 Scheme
1BMATE101 – Module 4
Ordinary Differential Equations of Higher Order
1BMATC101 – Module 4
Ordinary Differential Equations of Higher Order
🎯 In this video
Formation of the auxiliary equation
Finding the roots of the characteristic equation
Identification of real and distinct roots
Writing the complementary function
Obtaining the general solution
VTU exam-oriented step-by-step method
👉 Follow VTU Maths with Muheeb (Mathematics Tutor) on WhatsApp
https://whatsapp.com/channel/0029Vb6c...
👉 Get all VTU Maths updates and video links on Telegram
https://t.me/vtumathswithmathematicst...
💎 Support Us: Join our channel and get access to exclusive perks
/ @officialmathematicstutor
#HigherOrderDifferentialEquations
#LinearDifferentialEquations
#AuxiliaryEquation
#VTUMaths
#BMATE301
#BMATEC301
#1BMATE101
Повторяем попытку...
Доступные форматы для скачивания:
Скачать видео
-
Информация по загрузке: