G/Z(G) is isomorphic to I(G) the group of inner automorphisms of G - Chapter 10 - Lecture 3
Автор: Dr. Mrs. Samina S. Boxwala Kale
Загружено: 2021-01-13
Просмотров: 2011
Описание:
In this video, we use the fundamental theorem of group homomorphism to prove that for any group G, the quotient group G/Z(G) is isomorphic to the group I(G) of inner automorphisms of G. Here Z(G) denotes the center of the group G. We define a function from G to I(G) in such a manner that the function is onto and a homomorphism and for which the kernel is the center of G.
The aim of this channel is to provide a basic course in Group Theory and to give a near classroom experience for learning effectively. Click the link given here to subscribe to my channel: / @grouptheorybydrssbk
Link to the previous lecture
• Inner Automorphisms - Chapter 10 - Lecture 2
Link to the next lecture
• Group of Automorphisms of an Infinite Cycl...
Link to the first lecture of this chapter
• Automorphisms of A Group: Definiton and Ex...
Повторяем попытку...
Доступные форматы для скачивания:
Скачать видео
-
Информация по загрузке: