ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Web Scraping + Data Analysis + Visualization (BeautifulSoup + Pandas + Matplotlib) for Beginners

JAYPEE NOIDA

Автор: SIDDHANT SAXENA

Загружено: 2025-11-09

Просмотров: 48

Описание: Welcome to this step-by-step Python project tutorial! 🚀
In this video, we’ll go from Web Scraping → Data Analysis → Data Visualization — all in one session!
You’ll learn to scrape HTML data using BeautifulSoup (bs4), analyze it with Pandas, and visualize insights using Matplotlib.
Perfect for beginners looking to build a small but complete Data Science mini project.

🧩 Topics Covered & Timestamps

0:00 – Introduction & What We’ll Learn
0:06 – Overview: Web Scraping + Pandas + Matplotlib
0:17 – Understanding the HTML file structure
0:28 – Identifying HTML tags and attributes to scrape (title, instructor, rating, etc.)
0:47 – Installing required libraries (beautifulsoup4, pandas, matplotlib)
1:04 – Importing libraries and setting up environment
1:48 – Opening and reading the HTML file safely with encoding
3:12 – Printing and previewing HTML content
3:39 – Parsing HTML with BeautifulSoup
4:21 – Creating a BeautifulSoup object using html.parser
4:28 – Finding all course cards with .find_all()
5:12 – Extracting multiple course blocks from HTML
6:03 – Looping through all cards and preparing to extract details
6:15 – Extracting course title using .find() and .text.strip()
7:39 – Extracting instructor name using nested .find() and .span
9:59 – Extracting course rating (float conversion)
11:42 – Extracting number of students (integer conversion + text cleaning)
13:56 – Extracting price and cleaning ₹ symbol
14:48 – Printing all extracted values (title, instructor, rating, students, price)
15:02 – Appending all rows into a list of lists for DataFrame
15:40 – Creating Pandas DataFrame with proper column names
16:42 – Viewing the final structured table
17:00 – Getting DataFrame info using .info()
17:50 – Summarizing dataset using .describe()
18:25 – Sorting & finding Top 3 Courses by Rating
20:00 – Finding Top 3 Courses by Students Enrolled
20:48 – Finding Cheapest & Most Expensive Courses (idxmin / idxmax)
22:56 – Creating a derived column: Estimated Revenue = price × students
23:59 – Finding Highest Revenue Course
24:28 – Starting Data Visualization with Matplotlib
24:39 – Line Chart: Course vs Rating
26:33 – Rotating X-axis labels for better readability
27:53 – Adding markers and adjusting line width
28:38 – Bar Chart: Students Enrolled per Course
30:34 – Customizing Bar Colors, Edges & Gridlines
31:28 – Pie Chart: Price Share per Course
33:48 – Adding start angle & percentage display
34:07 – Final Recap and Project Summary
34:27 – Outro: What we learned + next steps

🧠 What You’ll Learn
Basics of Web Scraping using BeautifulSoup
Cleaning & organizing data with Pandas
Performing Data Analysis with .info(), .describe(), .sort_values()
Creating Visualizations (Line, Bar, Pie charts) with Matplotlib
Building a complete Python Data Project from scratch

🧰 Libraries Used
beautifulsoup4
pandas
matplotlib

💡 Project Idea
Mini Project: Course Analytics Dashboard
Scrape course data from an HTML page
Analyze top-rated and most enrolled courses
Visualize insights to make data-driven conclusions

🔗 Learn More : https://chatgpt.com/share/6910f14e-c1...

#Python #WebScraping #DataAnalysis #Matplotlib #BeautifulSoup #Pandas #PythonProjects #DataScience #MiniProject #CodingForBeginners

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Web Scraping + Data Analysis + Visualization (BeautifulSoup + Pandas + Matplotlib) for Beginners

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]