ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

PrefPalette: Personalized Preference Modeling with Latent Attributes

Автор: Conference on Language Modeling

Загружено: 2025-11-03

Просмотров: 48

Описание: Authors: Shuyue Stella Li, Melanie Sclar, Hunter Lang, Ansong Ni, Jacqueline He, Puxin Xu, Andrew Cohen, Chan Young Park, Yulia Tsvetkov, Asli Celikyilmaz

Personalizing AI systems requires understanding not just what users prefer, but the reasons that underlie those preferencesyet current preference models typically treat human judgment as a black box. We introduce PrefPalette, a framework that decomposes preferences into attribute dimensions and tailors its preference prediction to distinct social community values in a human-interpretable way. PrefPalette operationalizes a cognitive science principle known as multi-attribute decision making in two ways: (1) a scalable counterfactual attribute synthesis step that involves generating synthetic training data to isolate for individual attribute effects (e.g., formality, humor, cultural values), and (2) attention-based preference modeling that learns how different social communities dynamically weight these attributes. This approach moves beyond aggregate preference modeling to capture the diverse evaluation frameworks that drive human judgment. When evaluated on 45 social communities from the online platform Reddit, PrefPalette outperforms GPT-4o by 46.6% in average prediction accuracy. Beyond raw predictive improvements, PrefPalette also shed light on intuitive, community-specific profiles: scholarly communities prioritize verbosity and stimulation, conflict-oriented communities value sarcasm and directness, and support-based communities emphasize empathy. By modeling the attribute-mediated structure of human judgment, PrefPalette delivers both superior preference modeling

and transparent, interpretable insights, and serves as a first step toward

more trustworthy, value-aware personalized applications.

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
PrefPalette: Personalized Preference Modeling with Latent Attributes

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

Tom Griffiths - Mapping the Jagged Edges of AI with Cognitive Science

Tom Griffiths - Mapping the Jagged Edges of AI with Cognitive Science

Luke Zettlemoyer - Mixed-modal Language Modeling

Luke Zettlemoyer - Mixed-modal Language Modeling

Foundation models for 3D reconstruction - Alexandr Notchenko | PyTorch Meetup #21

Foundation models for 3D reconstruction - Alexandr Notchenko | PyTorch Meetup #21

Don’t lie to your friends: Learning what you know from collaborative self-play

Don’t lie to your friends: Learning what you know from collaborative self-play

Gillian Hadfield - Alignment is social: lessons from human alignment for AI

Gillian Hadfield - Alignment is social: lessons from human alignment for AI

Algorithmic resignation | Workshop on Law-Following AI 2025

Algorithmic resignation | Workshop on Law-Following AI 2025

Language models align with brain regions that represent concepts across modalities

Language models align with brain regions that represent concepts across modalities

ГАНС ЛАНДА — как противостоять вежливому безумцу?

ГАНС ЛАНДА — как противостоять вежливому безумцу?

Hidden in plain sight: VLMs overlook their visual representations

Hidden in plain sight: VLMs overlook their visual representations

Ты ПЛАТИШЬ Яндексу 449₽ каждый месяц. За ЧТО?

Ты ПЛАТИШЬ Яндексу 449₽ каждый месяц. За ЧТО?

FineWeb2: One Pipeline to Scale Them All — Adapting Pre-Training Data Processing to Every Language

FineWeb2: One Pipeline to Scale Them All — Adapting Pre-Training Data Processing to Every Language

Китайские роботы-кунг-фу изменили всё.

Китайские роботы-кунг-фу изменили всё.

Fluid Language Model Benchmarking

Fluid Language Model Benchmarking

Shirley Ho - Building a Polymathic Foundation Model for Science

Shirley Ho - Building a Polymathic Foundation Model for Science

Тут в IT не задолбисто! Как работать в IT меньше, а зарабатывать больше?

Тут в IT не задолбисто! Как работать в IT меньше, а зарабатывать больше?

Quantifying Fairness in LLMs Beyond Tokens: A Semantic and Statistical Perspective

Quantifying Fairness in LLMs Beyond Tokens: A Semantic and Statistical Perspective

AI concepts Explained!

AI concepts Explained!

Single-Pass Document Scanning for Question Answering

Single-Pass Document Scanning for Question Answering

Readability ≠ Learnability: Rethinking the Role of Simplicity in Training Small Language Models

Readability ≠ Learnability: Rethinking the Role of Simplicity in Training Small Language Models

Behaviour Change for Health, Environment and Safer Communities

Behaviour Change for Health, Environment and Safer Communities

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]