Lorenz Attractor and Python Code | Chaos Analysis with Strange (Fractal) Attractor Reconstruction
Автор: VoglData
Загружено: 2022-04-14
Просмотров: 2404
Описание:
This video is a guide on how to implement time-series reconstruction algorithms in Python with example of the Lorenz attractor. The Lorenz attractor is a mathematical chaotic system and, thus, fully disclosed. The reconstruction algorithms applied are the Takens delay-time embedding or simply Takens approach and the spectral embedding algorithm based on Laplacian Eigenmaps in combination with principal component analysis (PCA) and nearest neighbour algorithms (k-NN) taken out of machine learning. Strange (fractal) attractor reconstruction of time-series is an important methodology in nonlinear dynamics, nonlinear time-series analysis and chaos analysis.
Please suscribe and leave a like!
Tell me in the comments, which content you would like to listen to!
Content:
00:00 - 00:25 Animated Introduction
00:25 - 01:11 Content Presentation
01:11 - 03:31 Lorenz Attractor Theory
03:32 - 06:02 Python Code for Lorenz Attractor
06:03 - 08:38 Python Lorenz Attractor
08:39 - 11:05 Takens Delay Time Embedding Algorithm Theory
11:05 - 12:25 Python Code for Takens Approach
12:25 - 16:43 Python Takens Delay Time Embedding
16:43 - 19:00 Spectral Embedding Theory
19:00 - 20:45 Python Code Display for Spectral Embedding
20:45 - 22:00 Python Spectral Embedding Lorenz (Total)
22:00 - 27:06 Python Spectral Embedding Lorenz (Single Variables)
27:06 - End References and Final Comments
GitHub-Repository:
https://github.com/VoglDataScience/Lo...
Scientific Reference:
Belkin, M., & Niyogi, P. (2003). Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 15(6), 1373-1396.
Çoban, G., & Büyüklü, A. H. (2009). Deterministic flow in phase space of exchange rates: evidence of chaos in filtered series of Turkish Lira-Dollar daily growth rates. Chaos, Solitons and Fractals, 42(2), 1062-1067.
Harikrishnan, K., Misra, R., & Ambika, G. (2017). Is a hyperchaotic attractor superposition of two multifractals? Chaos, Solitons and Fractals, 103, 450-459.
Hirsch, M. (1997). Differential Topology. Berlin, New York: Springer.
Lewandowski, M., Makris, D., Velastin, S., & Nebel, J.-C. (2014). Structural Laplacian Eigenmaps for modeling sets of multivariate sequences. IEEE Transactions on Cybernetics, 44(6), 936-949.
Lorenz, E. (1963). Deterministic nonperiodic flow. Journal of the Atmospheric Sciences, 20, 130-141.
Song, X., Niu, D., & Zhang, Y. (2016). The Chaotic Attractor Analysis of DJIA Based on Manifold Embedding and Laplacian Eigenmaps. Mathematical Problems in Engineering, 4, 1-10.
Strogatz, S. (2014). Nonlinear Dynamics and Chaos. Colorado: Westview Press.
Takens, F. (1981). Detecting strange attractors in fluid turbulence. in: D. Rand. L.-S. Young (Eds.). Dynamical Systems and Turbulence. Springer Berlin, 366-381.
Thumbnail Reference:
Pixabay (CC0)
https://www.pexels.com/de-de/foto/nah...
Video Reference:
mda621326
https://pixabay.com/de/videos/partike...
https://pixabay.com/de/videos/partike...
https://pixabay.com/de/videos/partike...
mohamed_hassan
https://pixabay.com/de/videos/abstrak...
JuliusH
https://pixabay.com/de/videos/fraktal...
Music Reference:
Neonscapes by | e s c p | https://escp-music.bandcamp.com
Music promoted by https://www.free-stock-music.com
Attribution 4.0 International (CC BY 4.0)
https://creativecommons.org/licenses/...
https://www.free-stock-music.com/fsm-...
Controversia by Electronic Senses | / electronicsenses
Music promoted by https://www.free-stock-music.com
Creative Commons Attribution-ShareAlike 3.0 Unported
https://creativecommons.org/licenses/...
https://www.free-stock-music.com/elec...
Social Media and Website:
Markus Vogl {Business & Data Science}
https://vogl-datascience.de/
Twitter:
/ vogldata
LinkedIn:
/ vogl-datascience
GitHub:
https://github.com/VoglDataScience
Hastags
#chaos #nonlinear #nonlineardynamics #Lorenz #butterfly #strangeattractor #attractor #Takens #spectraltheory #embedding #complexity #dynamics #mathematics #python #pythonprogramming #data #datascientist #datscience #3danimation #science #reconstruction #analysis
Повторяем попытку...
Доступные форматы для скачивания:
Скачать видео
-
Информация по загрузке: