ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Building Real-Time ML Features with Feast, Spark, Redis, and Kafka

Автор: Toronto Machine Learning Society (TMLS)

Загружено: 2023-08-17

Просмотров: 1817

Описание: Speakers:
Danny Chiao, Engineering Lead, Tecton
Danny Chiao is an engineering lead at Tecton/Feast working on building a next-generation feature store. Previously, Danny was a technical lead at Google working on end-to-end machine learning problems within Google Workspace, helping build privacy-aware ML platforms / data pipelines and working with research and product teams to deliver large-scale ML-powered enterprise functionality. Danny holds a Bachelor’s degree in Computer Science from MIT.

Achal Shah, Software Engineer, Tecton
Achal Shah works at Tecton and is a tech lead for Feast, the open-source feature store. Before Tecton, Achal worked at Uber on their Machine Learning platform, Michelangelo, along with Tecton's co-founders. Achal has always had a passion for infrastructure design and the open-source community. In his free time, Achal loves to play hide and seek with his 1-year old daughter or read science fiction if she's asleep.


Abstract:
This workshop will focus on the core concepts underlying Feast, the open-source feature store. We’ll explain how Feast integrates with underlying data infrastructure including Spark, Redis, and Kafka, to provide an interface between models and data.

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Building Real-Time ML Features with Feast, Spark, Redis, and Kafka

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

Введение в основы Feature Store и MLOPS на примере Feast

Введение в основы Feature Store и MLOPS на примере Feast

Прекратите использовать Redis. Используйте Open Source.

Прекратите использовать Redis. Используйте Open Source.

Feast: feature store for Machine Learning

Feast: feature store for Machine Learning

What is Feature Store in Machine Learning | #Mlopstutorial #featurestore #machinelearning

What is Feature Store in Machine Learning | #Mlopstutorial #featurestore #machinelearning

Enable Production ML with Databricks Feature Store

Enable Production ML with Databricks Feature Store

Integrating multiple MLOps tools together on Google Cloud Platform

Integrating multiple MLOps tools together on Google Cloud Platform

Unbounded Consumption | OWASP Top 10 | Explained with Demo

Unbounded Consumption | OWASP Top 10 | Explained with Demo

🚀 Real-Time Feature Store Demo | Deploy an End-to-End MLOps Pipeline with Feast + Redis + Streamlit

🚀 Real-Time Feature Store Demo | Deploy an End-to-End MLOps Pipeline with Feast + Redis + Streamlit

Machine Learning and Data Science talks

Machine Learning and Data Science talks

Build Real-Time ML Apps with Python, Feast & NoSQL

Build Real-Time ML Apps with Python, Feast & NoSQL

Магазин функций для машинного обучения — MLOps

Магазин функций для машинного обучения — MLOps

gRPC против REST: что лучше использовать?

gRPC против REST: что лучше использовать?

ML System Design: Feature Store

ML System Design: Feature Store

Building a Feature Store around Dataframes and Apache Spark

Building a Feature Store around Dataframes and Apache Spark

Лучший Гайд по Kafka для Начинающих За 1 Час

Лучший Гайд по Kafka для Начинающих За 1 Час

Введение в хранилище функций Vertex AI

Введение в хранилище функций Vertex AI

6 Древних Изобретений, Похожие На Современные Устройства

6 Древних Изобретений, Похожие На Современные Устройства

MLOps Game Changer | Feast with DragonflyDB | Complete Demo

MLOps Game Changer | Feast with DragonflyDB | Complete Demo

Redis vs Dragonfly Performance (Latency - Throughput - Saturation)

Redis vs Dragonfly Performance (Latency - Throughput - Saturation)

Feast Feature Store Deep Dive // Felix Wang //  MLOps Meetup #81

Feast Feature Store Deep Dive // Felix Wang // MLOps Meetup #81

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]