ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Understanding Pandas Resampling and Spline Interpolation: Fixing Unexpected Results

Автор: vlogize

Загружено: 2025-05-27

Просмотров: 0

Описание: Discover the issues with `Pandas` resampling and spline interpolation while working with time-series data, along with clear solutions and examples.
---
This video is based on the question https://stackoverflow.com/q/66066925/ asked by the user 'komodovaran_' ( https://stackoverflow.com/u/7026806/ ) and on the answer https://stackoverflow.com/a/66068091/ provided by the user 'Kate Melnykova' ( https://stackoverflow.com/u/13118632/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Resampling with Pandas spline gives strange results. Do I misunderstand, even though the time matches?

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Understanding Pandas Resampling and Spline Interpolation: Fixing Unexpected Results

When working with time-series data in Python using the Pandas library, you might encounter some unexpected results when resampling and interpolating your data. One such challenge is illustrated in a recent question regarding the use of spline interpolation after resampling data in seconds. Let’s break down the problem and explore the solution to achieve the desired output.

The Problem: Strangeness with Resampling and Spline Interpolation

In this specific scenario, the user has a DataFrame with timestamps in seconds and is attempting to resample it at even intervals of 2 seconds. However, after performing the resampling and spline interpolation, the output values appear incorrect. The user questions if there’s a misunderstanding about how spline interpolation and resampling work in this context.

Here is a simplified version of the input data and how it is being processed:

[[See Video to Reveal this Text or Code Snippet]]

After this code runs, the output does not match the user's expectations. Let's explore why this happened.

Understanding the Issue

When resampling with a specified frequency (e.g., "2s"), only data points that fit the new time steps (2 seconds) will be retained. This can lead to significant data loss, especially if your original time data does not align perfectly with the new intervals.

Key Points of Misunderstanding:

Data Loss: Resampling skips data points that do not match the 2-second frame, which can throw off your interpolation results.

Spline Interpolation Limitations: The spline interpolation technique will work best with data that is dense enough to generate a smooth curve. If your resampled dataset is too sparse due to the aforementioned data loss, the results will appear incorrect.

The Solution: Correct Resampling and Interpolation

To address this issue, we need to ensure we properly upsample the DataFrame before resampling to keep as much of the original data as possible. This involves defining a smaller time increment for the initial resampling.

Here is how to modify the original code:

[[See Video to Reveal this Text or Code Snippet]]

Explanation of the Changes:

Upsampling: By initially resampling the DataFrame to a very small time interval (0.1 seconds), we maintain a larger number of data points that provide sufficient input for the spline interpolation.

Final Resampling: After interpolating, we can then resample again to get the desired 2-second intervals while ensuring all data is preserved as much as possible.

Conclusion

By understanding how resampling and interpolation works together in Pandas, we can resolve unexpected issues and better manage our time-series data. Ensuring that we retain enough data points for spline interpolation can significantly improve the accuracy of our analyses.

If you're working with time-series data in Pandas, always consider how resampling may affect your dataset before proceeding with interpolation methods. With the right approach, you can harness the full power of Pandas to make your data analysis more robust and reliable.

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Understanding Pandas Resampling and Spline Interpolation: Fixing Unexpected Results

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

Sparse Table & RMQ (Range Minimum Query)

Sparse Table & RMQ (Range Minimum Query)

Python Pandas Tutorial 2: Dataframe Basics

Python Pandas Tutorial 2: Dataframe Basics

Python Pandas Tutorial (Part 1): Getting Started with Data Analysis - Installation and Loading Data

Python Pandas Tutorial (Part 1): Getting Started with Data Analysis - Installation and Loading Data

💼 PMP Duration Estimation Masterclass | Agile & Waterfall Techniques with Real-Life Examples 🕒

💼 PMP Duration Estimation Masterclass | Agile & Waterfall Techniques with Real-Life Examples 🕒

Unsupervised Learning - Hierarchical Clustering

Unsupervised Learning - Hierarchical Clustering

"Хочется дожить до следующего завтрака". Песков слушал с кривой мордой, Греф пытался скрыть ужас

Но что такое нейронная сеть? | Глава 1. Глубокое обучение

Но что такое нейронная сеть? | Глава 1. Глубокое обучение

Можно ли поменять родину так быстро? / вДудь

Можно ли поменять родину так быстро? / вДудь

4 Hours Chopin for Studying, Concentration & Relaxation

4 Hours Chopin for Studying, Concentration & Relaxation

Python — полный курс для начинающих. Этот навык изменит твою жизнь.

Python — полный курс для начинающих. Этот навык изменит твою жизнь.

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]