ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

FPGAs are (not) Good at Deep Learning [Invited]

Автор: Crossroads 3D-FPGA Academic Research Center

Загружено: 2022-04-22

Просмотров: 27349

Описание: Speaker: Mohamed S. Abdelfattah, Cornell University

There have been many attempts to use FPGAs to accelerate deep neural networks (DNNs), including many by the speaker of this talk. Some of these attempts ended up facing direct competition from GPUs and ASICs that are hyper-tuned for DNNs–inevitably, FPGAs often lose in that competition. However, there are many promising research directions in which FPGAs are indeed the best platform to accelerate parts of a deep learning workload. This talk will discuss several emerging paradigms in which FPGA strengths can be successfully leveraged for accelerating deep learning workloads. I will focus on (1) Automated DNN-HW codesign, (2) Using FPGA lookup tables as DNN building blocks and (3) The role of embedded networks on-chip in FPGA-powered datacenters.

Speaker Bio: Mohamed Abdelfattah is an Assistant Professor at Cornell Tech and in the Electrical and Computer Engineering Department at Cornell University. His research interests include deep learning systems, automated machine learning, hardware-software codesign, reconfigurable computing, and FPGA architecture. Mohamed’s goal is to design the next generation of machine-learning-centric computer systems for both datacenters and mobile devices.

Mohamed received his BSc from the German University in Cairo, his MSc from the University of Stuttgart, and his PhD from the University of Toronto. His PhD was supported by the Vanier Canada Graduate Scholarship and he received three best paper awards for his work on embedded networks-on-chip for FPGAs. His PhD work garnered much industrial interest and has since been adopted by multiple semiconductor companies in their latest FPGAs. After his PhD, Mohamed spent time at Intel’s programmable solutions group, and most recently at Samsung where he led a research team focused on hardware-aware automated machine learning.

----------------------------------------------------------
For more videos subscribe to the YouTube channel    / @crossroadsfpga  !
For more information visit https://www.crossroadsfpga.org/semina...

----------------------------------------------------------
Website: https://www.crossroadsfpga.org

The Intel/VMware Crossroads 3D-FPGA Academic Research Center is jointly supported by Intel and VMware. The center is committed to public and free dissemination of its research outcome.

----------------------------------------------------------
Chapters

0:00 Introduction
0:43 GPU vs. DLA for DNN Acceleration
1:56 Arithmetic: Block Minifloat
4:33 Programming the Accelerator
6:39 Instruction Decode in HW
7:06 VLIW Network-on-Chip
8:47 Configurability: Custom Kernels
9:59 Customize Hardware for each DNN
10:48 Graph Compiler
12:32 Scheduling and Allocation
17:20 PART I: A Retrospective on FPGA Overlay for DNNS
19:13 Design Space Exploration Automated Codesi
20:22 AutoML: Neural Architecture Search (NAS)
21:59 AutoML: Hardware-Aware NAS
23:19 Hardware-Aware NAS Results
24:12 AutoML: Codesign NAS
27:23 Codesign NAS: Results
28:58 Automated Codesign
30:22 Mapping a DNN to Hardware
32:23 Binary Neural Networks
33:26 Logic Neural Networks
38:14 Deep Learning is Heterogeneous
42:16 Replace "Software Fallback" with Hardware Accelera
44:33 Accelerated Preprocessing Solutions
45:33 Hybrid FPGA-DLA Devices
47:57 Embedded NoCs on FPGAs
52:01 NoC-Enhanced vs. Conventional FPGAs
53:49 Is there still hope for FPGAs? Yes!

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
FPGAs are (not) Good at Deep Learning [Invited]

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

Software Emulators vs FPGAs

Software Emulators vs FPGAs

The History of the FPGA: The Ultimate Flex

The History of the FPGA: The Ultimate Flex

Почему Трамп выгораживает Путина | Виталий Портников @IgorYakovenko

Почему Трамп выгораживает Путина | Виталий Портников @IgorYakovenko

Architecture All Access: Modern FPGA Architecture | Intel Technology

Architecture All Access: Modern FPGA Architecture | Intel Technology

OverGen: Improving FPGA Usability through Domain-specific Overlay Generation [Invited]

OverGen: Improving FPGA Usability through Domain-specific Overlay Generation [Invited]

Но что такое нейронная сеть? | Глава 1. Глубокое обучение

Но что такое нейронная сеть? | Глава 1. Глубокое обучение

AI Hardware w/ Jim Keller

AI Hardware w/ Jim Keller

XDC 2019 | Everything Wrong With FPGAs - Ben Widawsky

XDC 2019 | Everything Wrong With FPGAs - Ben Widawsky

Примеры вопросов для собеседования на работу в сфере FPGA, VHDL, Verilog

Примеры вопросов для собеседования на работу в сфере FPGA, VHDL, Verilog

Under the Hood of OpenFPGA [Invited]

Under the Hood of OpenFPGA [Invited]

Driving a VGA Display?! Getting started with an FPGA! (TinyFPGA)

Driving a VGA Display?! Getting started with an FPGA! (TinyFPGA)

Towards Predictable and Efficient Datacenter Storage [Invited]

Towards Predictable and Efficient Datacenter Storage [Invited]

Объяснение принципов работы ИИ на ПЛИС.

Объяснение принципов работы ИИ на ПЛИС.

Чип «Делать что угодно»: ПЛИС

Чип «Делать что угодно»: ПЛИС

Introduction to FPGA Part 1 - What is an FPGA? | Digi-Key Electronics

Introduction to FPGA Part 1 - What is an FPGA? | Digi-Key Electronics

Machine Learning For Embedded Applications on FPGAs - Nick Fraser, Xilinx

Machine Learning For Embedded Applications on FPGAs - Nick Fraser, Xilinx

The Future of Computing Beyond Moore’s Law [Invited]

The Future of Computing Beyond Moore’s Law [Invited]

All about AI Accelerators: GPU, TPU, Dataflow, Near-Memory, Optical, Neuromorphic & more (w/ Author)

All about AI Accelerators: GPU, TPU, Dataflow, Near-Memory, Optical, Neuromorphic & more (w/ Author)

Xilinx Kria Makes FPGA Accelerated AI Video Available in Minutes

Xilinx Kria Makes FPGA Accelerated AI Video Available in Minutes

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]