ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Mastering GroupBy in Pandas: How to Aggregate Multiple Columns

Автор: vlogize

Загружено: 2025-05-27

Просмотров: 0

Описание: Learn how to effectively include multiple columns in a groupby operation using Pandas, ensuring a complete summary of your data.
---
This video is based on the question https://stackoverflow.com/q/66739215/ asked by the user 'NIDIA LAL' ( https://stackoverflow.com/u/5012976/ ) and on the answer https://stackoverflow.com/a/66739251/ provided by the user 'Andrej Kesely' ( https://stackoverflow.com/u/10035985/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Is there a way to include all columns in a groupby for similar data?

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Mastering GroupBy in Pandas: How to Aggregate Multiple Columns

When working with data in Python, especially sales data, it's common to encounter the situation where you want to summarize information by grouping similar entries. A popular library for data manipulation in Python is Pandas. A specific function that users often leverage is the groupby method, which allows you to group data and apply operations like summing up quantities and costs. However, you may find yourself wondering if you can include all relevant columns in your grouping. Let's explore how to tackle this common question!

Problem: Grouping and Summarizing Sales Data

Suppose you have a DataFrame that represents sales data with the following structure:

ProductQuantityCostA1250A1250A1250A1270A1250In this DataFrame, you want to calculate the total Quantity and total Cost for each product, specifically for product A. A basic groupby approach would yield the sum of costs only, leaving out the quantity.

Solution: Using agg() to Summarize Multiple Columns

The good news is that there is a way to summarize additional columns when grouping! Instead of using the basic groupby operation, you can use the agg() function, which allows you to specify how each column should be aggregated.

Step-by-Step Solution

Basic GroupBy: Your starting point is this operation:

[[See Video to Reveal this Text or Code Snippet]]

This will give you the total for the Cost column but not the Quantity.

Enhancing with agg():
To include totals for both Quantity and Cost, you can modify your code to include the agg() function, as shown below:

[[See Video to Reveal this Text or Code Snippet]]

Here, you're telling Pandas to sum the Quantity and Cost columns separately while grouping by Product.

Result of the Aggregation: When you execute the above command, you will obtain output like this:

[[See Video to Reveal this Text or Code Snippet]]

This result displays the total quantity of product A as 60 and the total cost as 270.

Conclusion

Utilizing the agg() function within your groupby operations in Pandas is a powerful method for summarizing multiple columns simultaneously. By adjusting your approach, you can ensure that all relevant data is captured, providing a comprehensive overview of your sales data.

Feel free to implement this tactic in your data analysis projects for enhanced insights and reports!

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Mastering GroupBy in Pandas: How to Aggregate Multiple Columns

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

Excel GROUPBY Hacks to Instantly Improve Your Reports!

Excel GROUPBY Hacks to Instantly Improve Your Reports!

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

Python Pandas Tutorial (Part 1): Getting Started with Data Analysis - Installation and Loading Data

Python Pandas Tutorial (Part 1): Getting Started with Data Analysis - Installation and Loading Data

How To Create Invoice | Billing System In Ms Access | Creating Tables   Part - 1

How To Create Invoice | Billing System In Ms Access | Creating Tables Part - 1

(EXPLAINED) Task 1(Coding) Deloitte Technology  Virtual Internship program(Explained )

(EXPLAINED) Task 1(Coding) Deloitte Technology Virtual Internship program(Explained )

Lec - 18: Apriori Algorithm in Data Mining | Real Life Example

Lec - 18: Apriori Algorithm in Data Mining | Real Life Example

Subroutines in Low Level Code - Computerphile

Subroutines in Low Level Code - Computerphile

Purple and Pink Glitter Particle Dust Glowing LED Motion Background 2022 free video background Loops

Purple and Pink Glitter Particle Dust Glowing LED Motion Background 2022 free video background Loops

Afternoon Jazz 🎷 [jazz lofi]

Afternoon Jazz 🎷 [jazz lofi]

How to use Microsoft Power Query

How to use Microsoft Power Query

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]