ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Lecture 6: Cauchy Convergence Theorem

Автор: MIT OpenCourseWare

Загружено: 2025-09-02

Просмотров: 2951

Описание: MIT 18.100B Real Analysis, Spring 2025
Instructor: Tobias Holck Colding
View the complete course: https://ocw.mit.edu/courses/18-100b-r...
YouTube Playlist:    • MIT 18.100B Real Analysis, Spring 2025  

In this lecture we show that there is way to determine whether or not a sequence is convergent even if we are unable to write down explicitly the limit. This is the notion of a sequence being a Cauchy sequence and has wide ranging applications. We will also discuss some of these applications.

License: Creative Commons BY-NC-SA
More information at https://ocw.mit.edu/terms
More courses at https://ocw.mit.edu
Support OCW at http://ow.ly/a1If50zVRlQ

We encourage constructive comments and discussion on OCW’s YouTube and other social media channels. Personal attacks, hate speech, trolling, and inappropriate comments are not allowed and may be removed. More details at https://ocw.mit.edu/comments.

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Lecture 6: Cauchy Convergence Theorem

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

Lecture 7: Bolzano–Weierstrass Theorem; Cauchy Sequences; Series

Lecture 7: Bolzano–Weierstrass Theorem; Cauchy Sequences; Series

2025 MIT Integration Bee - Finals

2025 MIT Integration Bee - Finals

Lecture 8: Convergence Tests for Series; Power Series

Lecture 8: Convergence Tests for Series; Power Series

MIT 18.100B Real Analysis, Spring 2025

MIT 18.100B Real Analysis, Spring 2025

🇬🇧 How To Construct Brillouin Zones (Easy Explanation!) | Solid State Physics [English]

🇬🇧 How To Construct Brillouin Zones (Easy Explanation!) | Solid State Physics [English]

1: Introduction to Neural Networks and Deep Learning; Training Deep NNs

1: Introduction to Neural Networks and Deep Learning; Training Deep NNs

MIT 18.200 Principles of Discrete Applied Mathematics, Spring 2024

MIT 18.200 Principles of Discrete Applied Mathematics, Spring 2024

MIT 15.773 Hands-On Deep Learning Spring 2024

MIT 15.773 Hands-On Deep Learning Spring 2024

Lecture 1: Introduction to Real Numbers

Lecture 1: Introduction to Real Numbers

Lecture 9: Limsup and Liminf; Power Series; Continuous Functions; Exponential Function

Lecture 9: Limsup and Liminf; Power Series; Continuous Functions; Exponential Function

David Emil Reich, Professor of Genetics, Harvard Medical School

David Emil Reich, Professor of Genetics, Harvard Medical School

Yue Yuan v Iga Swiatek Highlights | Australian Open 2026 First Round

Yue Yuan v Iga Swiatek Highlights | Australian Open 2026 First Round

10 EKSTREMALNYCH zdarzeń w ZSRR

10 EKSTREMALNYCH zdarzeń w ZSRR

LEARN OPENINGS AT THE 1500 LEVEL WITH SLOWKARU EDUCATIONAL SPEEDRUN

LEARN OPENINGS AT THE 1500 LEVEL WITH SLOWKARU EDUCATIONAL SPEEDRUN

Lecture 1: Introduction to Superposition

Lecture 1: Introduction to Superposition

MECZ - ABSURD! ODWOŁANE BRAMKI, SŁUPKI, POPRZECZKI I SZALONE PARADY! SOCIEDAD - BARCELONA, SKRÓT

MECZ - ABSURD! ODWOŁANE BRAMKI, SŁUPKI, POPRZECZKI I SZALONE PARADY! SOCIEDAD - BARCELONA, SKRÓT

🚨🚨 I GET TAUGHT HOW TO VIBE CODE🚨🚨

🚨🚨 I GET TAUGHT HOW TO VIBE CODE🚨🚨

Lecture 11: Extreme and Intermediate Value Theorem; Metric Spaces

Lecture 11: Extreme and Intermediate Value Theorem; Metric Spaces

Lec 1 | MIT 9.00SC Introduction to Psychology, Spring 2011

Lec 1 | MIT 9.00SC Introduction to Psychology, Spring 2011

Lec 2: Preferences and Utility Function

Lec 2: Preferences and Utility Function

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]