ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Chloe Mawer, Jonathan Whitmore - Exploratory data analysis in python - PyCon 2017

Автор: PyCon 2017

Загружено: 2017-05-18

Просмотров: 22560

Описание: "Speakers: Chloe Mawer, Jonathan Whitmore

With the recent advancements in machine learning algorithms and statistical techniques, and the increasing ease of implementing them in Python, it is tempting to ignore the power and necessity of exploratory data analysis (EDA), the crucial step before diving into machine learning or statistical modeling. Simply applying machine learning algorithms without a proper orientation of the dataset can lead to wasted time and spurious conclusions. EDA allows practitioners to gain intuition for the pattern of the data, identify anomalies, narrow down a set of alternative modeling approaches, devise strategies to handle missing data, and ensure correct interpretation of the results. Further, EDA can rapidly generate insights and answer many questions without requiring complex modeling.

Python is a fantastic language not only for machine learning, but also EDA. In this tutorial, we will walk through two hands-on examples of how to perform EDA using Python and discuss various EDA techniques for cross-section data, time-series data, and panel data. One example will demonstrate how to use EDA to answer questions, test business assumptions, and generate hypotheses for further analysis. The other example will focus on performing EDA to prepare for modeling. Between these two examples, we will cover:

Data profiling and quality assessment
Basic describing of the data
Visualizing the data including interactive visualizations
Identifying patterns in the data (including patterns of correlated missing data)
Dealing with many attributes (columns)
Dealing with large datasets using sampling techniques
Informing the engineering of features for future modeling
Identifying challenges of using the data (e.g. skewness, outliers)
Developing an intuition for interpreting the results of future modeling

The intended audience for this tutorial are aspiring and practicing data scientists and analysts, or anyone who wants to be able to get insights out of data. Students must have at least an intermediate-level knowledge of Python and some familiarity with analyzing data would be beneficial. Installation of Jupyter Notebook will be required (and potentially, we will also demonstrate analysis in JupyterLab, if its development in the next few months allows). Instructions will be sent on what packages to install beforehand.



Slides can be found at: https://speakerdeck.com/pycon2017 and https://github.com/PyCon/2017-slides"

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Chloe Mawer, Jonathan Whitmore - Exploratory data analysis in python - PyCon 2017

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

Christopher Fonnesbeck - Introduction to Statistical Modeling with Python - PyCon 2017

Christopher Fonnesbeck - Introduction to Statistical Modeling with Python - PyCon 2017

Удары по Орешнику, Z-паника из-за Starlink, Эпштейн: конспирологи были правы? Милов, Бер, Белят

Удары по Орешнику, Z-паника из-за Starlink, Эпштейн: конспирологи были правы? Милов, Бер, Белят

IPython and Jupyter in Depth: High productivity, interactive Python - PyCon 2017

IPython and Jupyter in Depth: High productivity, interactive Python - PyCon 2017

Aileen Nielsen - Time Series Analysis - PyCon 2017

Aileen Nielsen - Time Series Analysis - PyCon 2017

Jake VanderPlas - Exploratory Data Visualization with Vega, Vega-Lite, and Altair - PyCon 2018

Jake VanderPlas - Exploratory Data Visualization with Vega, Vega-Lite, and Altair - PyCon 2018

Взрыв у Кремля? / Теракт на Красной площади

Взрыв у Кремля? / Теракт на Красной площади

Allen Downey - Computational Statistics - PyCon 2016

Allen Downey - Computational Statistics - PyCon 2016

4 Hours Chopin for Studying, Concentration & Relaxation

4 Hours Chopin for Studying, Concentration & Relaxation

Brandon Rhodes - Pandas From The Ground Up - PyCon 2015

Brandon Rhodes - Pandas From The Ground Up - PyCon 2015

Stephen Elston - Data Visualization and Exploration with Python

Stephen Elston - Data Visualization and Exploration with Python

Matthew Rocklin   Dask A Pythonic Distributed Data Science Framework   PyCon 2017

Matthew Rocklin Dask A Pythonic Distributed Data Science Framework PyCon 2017

Allen Downey - Bayesian statistics made simple - PyCon 2016

Allen Downey - Bayesian statistics made simple - PyCon 2016

Лучший документальный фильм про создание ИИ

Лучший документальный фильм про создание ИИ

Torsten Scholak, Diego Maniloff   Intro to Bayesian Machine Learning with PyMC3 and Edward

Torsten Scholak, Diego Maniloff Intro to Bayesian Machine Learning with PyMC3 and Edward

Алгоритмы на Python 3. Лекция №1

Алгоритмы на Python 3. Лекция №1

Алгоритмы и структуры данных ФУНДАМЕНТАЛЬНЫЙ КУРС от А до Я. Графы, деревья, хеш таблицы и тд

Алгоритмы и структуры данных ФУНДАМЕНТАЛЬНЫЙ КУРС от А до Я. Графы, деревья, хеш таблицы и тд

Luciano Ramalho - Decorators and descriptors decoded - PyCon 2017

Luciano Ramalho - Decorators and descriptors decoded - PyCon 2017

Музыка для работы за компьютером | Фоновая музыка для концентрации и продуктивности

Музыка для работы за компьютером | Фоновая музыка для концентрации и продуктивности

Chalmer Lowe - bokeh: Data Visualization in Python - PyCon 2017

Chalmer Lowe - bokeh: Data Visualization in Python - PyCon 2017

Playlist,,Deep House,Music Played in Louis Vuitton Stores

Playlist,,Deep House,Music Played in Louis Vuitton Stores

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]