ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Scott Aaronson | How Much Math Is Knowable?

Автор: Harvard CMSA

Загружено: 2025-04-22

Просмотров: 54400

Описание: Speaker: Scott Aaronson, Department of Computer Science, University of Texas, Austin

Title: How Much Math Is Knowable?

Abstract: Theoretical computer science has over the years sought more and more refined answers to the question of which mathematical truths are knowable by finite beings like ourselves, bounded in time and space and subject to physical laws. I’ll tell a story that starts with Gödel’s Incompleteness Theorem and Turing’s discovery of uncomputability. I’ll then introduce the spectacular Busy Beaver function, which grows faster than any computable function. Work by me and Yedidia, along with recent improvements by O’Rear and Riebel, has shown that the value of BB(745) is independent of the axioms of set theory; on the other end, an international collaboration proved last year that BB(5) = 47,176,870. I’ll speculate on whether BB(6) will ever be known, by us or our AI successors. I’ll next discuss the P!=NP conjecture and what it does and doesn’t mean for the limits of machine intelligence. As my own specialty is quantum computing, I’ll summarize what we know about how scalable quantum computers, assuming we get them, will expand the boundary of what’s mathematically knowable. I’ll end by talking about hypothetical models even beyond quantum computers, which might expand the boundary of knowability still further, if one is able (for example) to jump into a black hole, create a closed timelike curve, or project oneself onto the holographic boundary of the universe.

The Yip Lecture takes place thanks to the support of Dr. Shing-Yiu Yip.

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Scott Aaronson | How Much Math Is Knowable?

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

Мадху Судан | Проблема P и NP: экзистенциальный вопрос математики

Мадху Судан | Проблема P и NP: экзистенциальный вопрос математики

Scott Aaronson: The Greatest Unsolved Problem in Math

Scott Aaronson: The Greatest Unsolved Problem in Math

How Much Math Is Knowable?

How Much Math Is Knowable?

Prof. Scott Aaronson: Why Philosophers Should Care About Computational Complexity @ UT Austin

Prof. Scott Aaronson: Why Philosophers Should Care About Computational Complexity @ UT Austin

A Swift Introduction to Geometric Algebra

A Swift Introduction to Geometric Algebra

Граница вычислений

Граница вычислений

A Once-in-a-Century Proof: The Kakeya Conjecture

A Once-in-a-Century Proof: The Kakeya Conjecture

What is the Lebesgue Integral?

What is the Lebesgue Integral?

Самая большая головоломка в информатике: P против NP

Самая большая головоломка в информатике: P против NP

Как чёрные дыры навели физиков на мысль, что наша Вселенная - голограмма?

Как чёрные дыры навели физиков на мысль, что наша Вселенная - голограмма?

Can A.I. do mathematics? - Kevin Buzzard

Can A.I. do mathematics? - Kevin Buzzard

Умный способ подсчёта танков — Numberphile

Умный способ подсчёта танков — Numberphile

But what is a Laplace Transform?

But what is a Laplace Transform?

Percolation: a Mathematical Phase Transition

Percolation: a Mathematical Phase Transition

How Quantum Complexity Found Its Way into Black Hole Physics | Special Lecture

How Quantum Complexity Found Its Way into Black Hole Physics | Special Lecture

Assessing skeptical views of interpretability research

Assessing skeptical views of interpretability research

What is a Hilbert Space?

What is a Hilbert Space?

Terence Tao - Machine-Assisted Proofs (February 19, 2025)

Terence Tao - Machine-Assisted Proofs (February 19, 2025)

Zhigang Yao | Interaction of Statistics and Geometry: A New Landscape for Data Science

Zhigang Yao | Interaction of Statistics and Geometry: A New Landscape for Data Science

Scott Aaronson

Scott Aaronson "On the Nature of Proof"

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]