ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Bayesian Networks for Causal Reasoning (Lecture 2) by Tavpritesh Sethi

Автор: International Centre for Theoretical Sciences

Загружено: 2023-07-24

Просмотров: 197

Описание: PROGRAM : MACHINE LEARNING FOR HEALTH AND DISEASE

ORGANIZERS : Gautam Menon (Ashoka University, Sonepat, India), Leelavati Narlikar (IISER Pune, India), Uma Ram (Seethapathy Clinic & Hospital, Chennai, India), Ponnusamy Saravanan (University of Warwick, UK) and Rahul Siddharthan (The Institute of Mathematical Sciences, Chennai, India)
DATE : 24 July 2023 to 04 August 2023
VENUE: Ramanujan Lecture Hall, ICTS Bengaluru

The program will bring together machine learning experts, statisticians, clinicians, and public health experts to discuss how to harness modern mathematical and computational techniques to better understand health-related data across multiple domains. Basics of various machine learning techniques, including logistic regression, tree-based methods, support vector machines, Bayesian methods, and deep networks will be covered with examples of their applicability in biomedicine and health. Applications will include predicting outcomes for individual patients from clinical and lifestyle parameters, analysing patient data such as X-rays, ultrasound images and ECG measurements, genomic variant analysis, and inferring patterns in heterogeneous large-scale data. Speakers from both computational/statistical and clinical backgrounds will be invited.

While the overarching goal is to bridge the gap between mathematical modelling and clinical problems in general, the program has these specific aims:

To introduce people who are trained in machine learning (both theory and practice) to data-based problems in health care.
To introduce clinical practitioners with little ML background to tools that can be easily adapted to analyse their own data.
To have an open discussion between clinicians and mathematical modellers about the problems faced in bridging the gap between the communities.
To discuss the possibility of building public health databases as resources.
To generate reference material, tutorials, videos and other resources to help clinicians understand and apply ML techniques in their work.
The event is partly supported by the IMSc Centre for Disease Modelling, The Institute of Mathematical Sciences, Chennai.

ICTS is committed to building an environment that is inclusive, non-discriminatory and welcoming of diverse individuals. We especially encourage the participation of women and other under-represented groups.

CONTACT US: [email protected]

PROGRAM LINK: https://www.icts.res.in/program/mlhd2023

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Bayesian Networks for Causal Reasoning (Lecture 2) by Tavpritesh Sethi

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

Bayesian Networks for Causal Reasoning (Lecture 1) by Tavpritesh Sethi

Bayesian Networks for Causal Reasoning (Lecture 1) by Tavpritesh Sethi

Revisiting Homogeneous Einstein Manifolds by Anusha Mangala Krishnan

Revisiting Homogeneous Einstein Manifolds by Anusha Mangala Krishnan

Valid Inference after Model Selection and the selectiveInference Package | NYU

Valid Inference after Model Selection and the selectiveInference Package | NYU

Моделирование Монте-Карло

Моделирование Монте-Карло

Entanglement in Quantum Fields: From the Early Universe to the Lab by Patricia Ribes Metidieri

Entanglement in Quantum Fields: From the Early Universe to the Lab by Patricia Ribes Metidieri

Beyond Simple A/B Testing: Advanced Experimentation Tactics

Beyond Simple A/B Testing: Advanced Experimentation Tactics

Some Combinatorial Structures in QFT by Karen Yeats

Some Combinatorial Structures in QFT by Karen Yeats

Autoencoder Forest for Anomaly Detection from IoT Time Series | SP Group

Autoencoder Forest for Anomaly Detection from IoT Time Series | SP Group

Understanding the Discrete Fourier Transform and the FFT

Understanding the Discrete Fourier Transform and the FFT

Activity Driven Energy Transport by Urna Basu

Activity Driven Energy Transport by Urna Basu

System Design Concepts Course and Interview Prep

System Design Concepts Course and Interview Prep

Как пользоваться Claude? Гайд с нуля до результата

Как пользоваться Claude? Гайд с нуля до результата

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

Маска подсети — пояснения

Маска подсети — пояснения

Краткое объяснение больших языковых моделей

Краткое объяснение больших языковых моделей

Quantifying Three-Manifolds: Physicists’ and Mathematicians by Ramadevi Pichai

Quantifying Three-Manifolds: Physicists’ and Mathematicians by Ramadevi Pichai

Boundaries of Rank 2 Positroids: A Graphical Algorithm by Susama Agarwala

Boundaries of Rank 2 Positroids: A Graphical Algorithm by Susama Agarwala

Визуализация внимания, сердце трансформера | Глава 6, Глубокое обучение

Визуализация внимания, сердце трансформера | Глава 6, Глубокое обучение

Lecture 1: Neural Networks and Interpretability techniques

Lecture 1: Neural Networks and Interpretability techniques

Generalizations of Classical Relativity Theorems by Eleni Alexandra Kontou

Generalizations of Classical Relativity Theorems by Eleni Alexandra Kontou

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]