ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Finding the value of k for which the Piecewise Function is Continuous and Computing ff(5)

Olympiad Mathematics question

Harvard University entrance question

Oxford University entrance question

mathematics skills for learners

mathematics techniques you must know about

amazing Mathematics techniques

answering a trickish Olympiad Mathematics question on Piecewise Function

computing a numerical value from a Piecewise Function

composite of a Piecewise Function

Olympiad Mathematics question on functions

continuity of a function

continuity of a piecewise function

Автор: UNDERSTANDING MATHEMATICS

Загружено: 2025-11-05

Просмотров: 26

Описание: After watching this video, you would be able to find the value of k for which the Piecewise Function is continuous, and compute the numerical value of ff(5) from the piecewise function.

A piecewise function is a function defined by different expressions or rules for different intervals of its domain. It's like a chameleon that changes its colour (formula) depending on the input value(domain).

Here's a simple example:
f(x) = x^2 if x is less than 0
or
f(x) = x + 1 if x greater than or equal to 0

In this case, the function behaves differently based on whether x is negative or non-negative.

Piecewise functions are useful for modeling real-world situations where the behavior changes abruptly, like:

Tax brackets (different tax rates for different income levels)
Shipping costs (different rates for different weight ranges)
Electrical circuits (different behaviors for different voltage ranges)
Continuity of a Piecewise Function
A piecewise function is said to be continuous if it satisfies the following conditions:

Conditions for Continuity:
1. *Each Piece is Continuous*: Each sub-function is continuous within its respective interval.
2. *Continuity at Breakpoints*: The function is continuous at the points where the definition changes (breakpoints). This means:
The left-hand limit and right-hand limit at the breakpoint are equal.
The limit at the breakpoint equals the function value at that point.

Formally:
For a piecewise function \( f(x) \) defined as:
[ f(x) = \begin{cases}
f_1(x) & \text{if } x less than a \
f_2(x) & \text{if } x \geq a
\end{cases} ]

The function is continuous at ( x = a ) if:
1. \( \lim_{x \to a^-} f(x) = lim_{x \to a^+} f(x) \)
2. \( \lim_{x \to a} f(x) = f(a) \)

Example:
Consider the piecewise function:
f(x) = \begin{cases}
x^2 & \text{if } x less than 2 \
2x & \text{if } x \geq 2
\end{cases}

To check continuity at \( x = 2 \):
1. *Left-Hand Limit*: ( lim_{x \to 2^-} x^2 = 4 \)
2. *Right-Hand Limit*: ( \lim_{x \to 2^+} 2x = 4 \)
3. *Function Value*: ( f(2) = 2(2) = 4 )

Since the left-hand limit, right-hand limit, and function value are all equal, the function is continuous at ( x = 2 ).

Would you like to watch other similar videos on Piecewise functions? just drop a comment!

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Finding the value of k for which the Piecewise Function is Continuous and Computing ff(5)

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]