ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

C 5.8 | Non Max Suppression | NMS | CNN | Object Detection | Machine learning | EvODN

machine learning

ai

object detection

tutorial

convolution

convolutional neural networks

cnn

convnet

nms

non max suppression

Автор: Cogneethi

Загружено: 2019-08-14

Просмотров: 12968

Описание: This is a repeat video of NMS, in case you have not taken the Classical CV (3rd) chapter:    • C38 | NMS | Non Max Suppression | Object D...  

as you will see in this video, there will be multiple detections per object.
So, how do we select the best out of those multiple detections.
One option is to use confidence score thresholds. But we will see that, we cant have a single threshold for all objects.
So, what we do is use Non Max Suppression. Basically keep the box with the highest confidence score and eliminate others that overlap this box with an IOU of more than, say, 50% or 70%.
So, we use Sliding Windows to identify objects at different locations, Image Pyramid to identify objects of different sizes. These 2 techniques are applied at the input side.
At the output side, we will have multiple detections per object and some invalid detections mostly on the background regions of the image with very low confidence scores.
So, we first do a confidence score thresholding to eliminate detections on background regions of the image.
Then we apply NMS to get the one best detection for each of the objects in the image.
These are the 2 techniques used at the output side.

------------------------
This is a part of the course 'Evolution of Object Detection Networks'.
See full playlist here:    • Evolution Of Object Detection Networks  
------------------------
Slide credit:    • Lecture 18- Deformable Part Models (DPM) -...  
Dalal & Triggs Detector: https://lear.inrialpes.fr/people/trig...
Image Credit - https://federerfan07.com/2011/06/25/l...

Copyright Disclaimer: Under section 107 of the Copyright Act 1976, allowance is made for “fair use” for purposes such as criticism, comment, news reporting, teaching, scholarship, education and research.

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
C 5.8 | Non Max Suppression | NMS | CNN | Object Detection | Machine learning | EvODN

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

C 5.9 | Calculating Model Size of a ConvNet | 1x1 Convolution | Object Detection | Machine Learning

C 5.9 | Calculating Model Size of a ConvNet | 1x1 Convolution | Object Detection | Machine Learning

(NMS) Non Maximum Suppression explained in detail using example. NMS algorithm explained.

(NMS) Non Maximum Suppression explained in detail using example. NMS algorithm explained.

All Machine Learning algorithms explained in 17 min

All Machine Learning algorithms explained in 17 min

C 5.0 | Object Localization | Bounding Box Regression | CNN | Machine Learning | EvODN

C 5.0 | Object Localization | Bounding Box Regression | CNN | Machine Learning | EvODN

Why Does Diffusion Work Better than Auto-Regression?

Why Does Diffusion Work Better than Auto-Regression?

C++ 26 is Complete!

C++ 26 is Complete!

Самая холодная деревня в мире (Это видео стоило мне здоровья) -71°C

Самая холодная деревня в мире (Это видео стоило мне здоровья) -71°C

RAG | САМОЕ ПОНЯТНОЕ ОБЪЯСНЕНИЕ!

RAG | САМОЕ ПОНЯТНОЕ ОБЪЯСНЕНИЕ!

C 5.6 | Overfeat Network Design | Important-Dont skip | CNN | Object Detection | EvODN

C 5.6 | Overfeat Network Design | Important-Dont skip | CNN | Object Detection | EvODN

Non Max Suppression Explained and PyTorch Implementation

Non Max Suppression Explained and PyTorch Implementation

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]