ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

A Musician's Intuition on the Fourier Transform (feat. the Inner Product) | 3b1b SoME1

Автор: Water Gun Water Gun Sky Attack

Загружено: 2021-08-06

Просмотров: 20414

Описание: My entry for the 3Blue1Brown Summer of Musical Exposition competition. In this video I describe one way you could derive the Fourier Transform from scratch using trigonometry, numerical simulations, the majesty of the inner product, and no complex numbers. My hope is that this is a somewhat-broadly accessible explanation for why the Fourier Transform works that may serve as a bridge to why variants of the Fourier Transform also work.


Knowledge of calculus is not required, though I do show a few integrals here and there for those who are into that.

I am not good at explaining things succinctly. I have also never made a "video essay" before. This video is messier than I'd like but I have run out of time to whittle it down or clean it up - hopefully it is watchable.

  / wgwgsa  

watergunsky.bandcamp.com

0:00 Introduction
1:18 Basics of the Inner Product
8:25 Inner Products on Sums of Sines
12:47 Phase Problems
14:37 How to Fix Phase Problems
16:35 Two Inner Products to Find One Wave
21:45 Double-Inner Product Examples
25:56 Yep, That's The Fourier Transform
28:13 Concluding Remarks

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
A Musician's Intuition on the Fourier Transform (feat. the Inner Product) | 3b1b SoME1

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

The Discrete Fourier Transform: Most Important Algorithm Ever?

The Discrete Fourier Transform: Most Important Algorithm Ever?

Newton's superb theorem: simplicity through symmetry

Newton's superb theorem: simplicity through symmetry

Peter Gilliam - Musical Fourier (#SoME1)

Peter Gilliam - Musical Fourier (#SoME1)

Вейвлеты: математический микроскоп

Вейвлеты: математический микроскоп

The BEST Way to Find a Random Point in a Circle | #SoME1 #3b1b

The BEST Way to Find a Random Point in a Circle | #SoME1 #3b1b

But what is the Fourier Transform?  A visual introduction.

But what is the Fourier Transform? A visual introduction.

The Tale of Three Triangles

The Tale of Three Triangles

Fourier Transforms || Theoretical Interpretations, Complex Exponentials and Window Effect

Fourier Transforms || Theoretical Interpretations, Complex Exponentials and Window Effect

Why There's 'No' Quintic Formula (proof without Galois theory)

Why There's 'No' Quintic Formula (proof without Galois theory)

Secrets of the Fibonacci Tiles - 3B1B Summer of Math Exposition

Secrets of the Fibonacci Tiles - 3B1B Summer of Math Exposition

The Strange Case of the Umbral Calculus #SoME

The Strange Case of the Umbral Calculus #SoME

Statistical Mechanics | Entropy and Temperature

Statistical Mechanics | Entropy and Temperature

The Universe Tried to Hide the Gravity Particle. Physicists Found a Loophole.

The Universe Tried to Hide the Gravity Particle. Physicists Found a Loophole.

Anti-Aliasing for FDM 3D Printing Is Finally Here (Micro-Non-Planar Printing)

Anti-Aliasing for FDM 3D Printing Is Finally Here (Micro-Non-Planar Printing)

How The Fridge Destroyed One of the World’s Largest Monopolies

How The Fridge Destroyed One of the World’s Largest Monopolies

Estimation, Distances, and Smoothness (3Blue1Brown Summer of Math Exposition)

Estimation, Distances, and Smoothness (3Blue1Brown Summer of Math Exposition)

Can you change a sum by rearranging its numbers? --- The Riemann Series Theorem

Can you change a sum by rearranging its numbers? --- The Riemann Series Theorem

Explanation of the butterfly effect and deterministic chaos using billiards

Explanation of the butterfly effect and deterministic chaos using billiards

Can Probabilities Be Negative? – What this question teaches us about quantum theory  #SoME1

Can Probabilities Be Negative? – What this question teaches us about quantum theory #SoME1

I spent an entire summer to find these spirals  #SoME1

I spent an entire summer to find these spirals #SoME1

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]