An SDCA-powered inexact dual augmented Lagrangian method(...) - Obozinski - Workshop 3 - CEB T1 2019
Автор: Institut Henri Poincaré
Загружено: 2019-05-07
Просмотров: 228
Описание:
Guillaume Obozinski (Swiss Data Science Center) / 02.04.2019
An SDCA-powered inexact dual augmented Lagrangian method for fast CRF learning
I'll present an efficient dual augmented Lagrangian formulation to learn conditional random field (CRF) models. The algorithm, which can be interpreted as an inexact gradient method on the multiplier, does not require to perform exact inference iteratively, requires only a fixed number of stochastic clique-wise updates at each epoch to obtain a sufficiently good estimate of the gradient w.r.t. the Lagrange multipliers. We prove that the proposed algorithm enjoys global linear convergence for both the primal and the dual objective. Our experiments show that the proposed algorithm outperforms state-of-the-art baselines in terms of speed of convergence. (Joint work with Shell Xu Hu)
----------------------------------
Vous pouvez nous rejoindre sur les réseaux sociaux pour suivre nos actualités.
Facebook : / instituthenripoincare
Twitter : / inhenripoincare
Instagram : / instituthenripoincare
*************************************
Langue : Anglais; Date : 02.04.2019; Conférencier : Obozinski, Guillaume; Évenement : Workshop 3 - CEB T1 2019; Lieu : IHP; Mots Clés :
Повторяем попытку...
Доступные форматы для скачивания:
Скачать видео
-
Информация по загрузке: