Скачать
Learning to Play the Game of Nim with Reinforcement Learning (Q-learning)
Автор: Image Processing, CV, ML, DL & AI Projects
Загружено: 2020-04-12
Просмотров: 97
Описание:
Learning Project 4b from CS50 AI (by Harvard @edX): Learning to play the Game of Nim with Reinforcement Learning (Q-learning), the AI agent plays 10000 games with itself and learns from the rewards / its mistakes, by updating the q-values with the equation
Q(s,a)=Q(s,a) + α.(R(s,a) + γ.(max {a′} Q(s′,a′ )) − Q(s,a))
in the initial rounds of training.
As can be seen, the q-values are learnt for only a few (state, action) pairs, since almost all of the state-spaces are yet to be explored by the agent.
(#python #ml #reinforcementlearning #ai)
Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Повторяем попытку...
Доступные форматы для скачивания:
Скачать видео
-
Информация по загрузке: