ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Jared Kaplan | Scaling Laws and Their Implications for Coding AI

Автор: Harvard CMSA

Загружено: 2022-03-04

Просмотров: 4699

Описание: New Technologies in Mathematics Seminar 3/2/2022

Speaker: Jared Kaplan, Johns Hopkins Dept. of Physics & Astronomy

Title: Scaling Laws and Their Implications for Coding AI

Abstract: Scaling laws and associated downstream trends can be used as an organizing principle when thinking about current and future ML progress. I will briefly review scaling laws for generative models in a number of domains, emphasizing language modeling. Then I will discuss scaling results for transfer from natural language to code, and results on python programming performance from “codex” and other models. If there’s time I’ll discuss prospects for the future — limitations from dataset sizes, and prospects for RL and other techniques.

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Jared Kaplan | Scaling Laws and Their Implications for Coding AI

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

James Bonifacio | Bootstrapping hyperbolic manifolds

James Bonifacio | Bootstrapping hyperbolic manifolds

Jared Kaplan - Human level AI by 2030? (Technical talk at physics conference Strings 2024)

Jared Kaplan - Human level AI by 2030? (Technical talk at physics conference Strings 2024)

Think Fast, Talk Smart: Communication Techniques

Think Fast, Talk Smart: Communication Techniques

ICML 2024 Tutorial: Physics of Language Models

ICML 2024 Tutorial: Physics of Language Models

When a math trick turns out to be real

When a math trick turns out to be real

Объяснение Шиншиллы: оптимальные для вычислений массивные языковые модели

Объяснение Шиншиллы: оптимальные для вычислений массивные языковые модели

Краткое объяснение больших языковых моделей

Краткое объяснение больших языковых моделей

AI can't cross this line and we don't know why.

AI can't cross this line and we don't know why.

Human-Level AI by 2030? by Jared Kaplan

Human-Level AI by 2030? by Jared Kaplan

Yann LeCun | Self-Supervised Learning, JEPA, World Models, and the future of AI

Yann LeCun | Self-Supervised Learning, JEPA, World Models, and the future of AI

The problem with pretending quantum mechanics makes sense | Sean Carroll

The problem with pretending quantum mechanics makes sense | Sean Carroll

Richard Sutton – Father of RL thinks LLMs are a dead end

Richard Sutton – Father of RL thinks LLMs are a dead end

The Strange Math That Predicts (Almost) Anything

The Strange Math That Predicts (Almost) Anything

Scaling and the Road to Human-Level AI | Anthropic Co-founder Jared Kaplan

Scaling and the Road to Human-Level AI | Anthropic Co-founder Jared Kaplan

“What's wrong with LLMs and what we should be building instead” - Tom Dietterich - #VSCF2023

“What's wrong with LLMs and what we should be building instead” - Tom Dietterich - #VSCF2023

Think Faster, Talk Smarter with Matt Abrahams

Think Faster, Talk Smarter with Matt Abrahams

Neural Scaling Laws and GPT-3 - Jared Kaplan

Neural Scaling Laws and GPT-3 - Jared Kaplan

Jared Kaplan (Anthropic): Fireside Chat

Jared Kaplan (Anthropic): Fireside Chat

676: The Chinchilla Scaling Laws — with Jon Krohn (@JonKrohnLearns)

676: The Chinchilla Scaling Laws — with Jon Krohn (@JonKrohnLearns)

The Bitterest of Lessons: The Role of Data and Optimization in Emergence

The Bitterest of Lessons: The Role of Data and Optimization in Emergence

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]