ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Regression Episode 2: Ordinary Least Squares Explained

Автор: CenterStat

Загружено: 2017-08-02

Просмотров: 20117

Описание: In this episode of Office Hours Dan extends his prior introduction of the linear regression model to show how the model is fit to sample data using ordinary least squares estimation. Dan’s presentation is less mathematical and more conceptual, and attempts to provide some insight into what happens behind-the-scenes when estimating a regression model in practice...

Dan begins by reviewing the three parameters that define a one-predictor regression model: the intercept, slope, and residual variance. He then describes the analytic goal of obtaining optimal estimates of these parameters from the sample data. He uses graphical representations to highlight the goal of calculating sample estimates that result in the smallest possible sum of squared residuals. This episode establishes several basic principles that will be revisited in the following two episodes on inference.

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Regression Episode 2: Ordinary Least Squares Explained

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

Regression Episode 3: Testing the Model

Regression Episode 3: Testing the Model

3.2: Linear Regression with Ordinary Least Squares Part 1 - Intelligence and Learning

3.2: Linear Regression with Ordinary Least Squares Part 1 - Intelligence and Learning

Regression Episode 1: Introduction to Linear Regression

Regression Episode 1: Introduction to Linear Regression

MLE vs OLS | Maximum likelihood vs least squares in linear regression

MLE vs OLS | Maximum likelihood vs least squares in linear regression

Why use a structural equation model?

Why use a structural equation model?

The Main Ideas of Fitting a Line to Data (The Main Ideas of Least Squares and Linear Regression.)

The Main Ideas of Fitting a Line to Data (The Main Ideas of Least Squares and Linear Regression.)

Что такое метод наименьших квадратов?

Что такое метод наименьших квадратов?

Статистика 101: Линейная регрессия, метод наименьших квадратов

Статистика 101: Линейная регрессия, метод наименьших квадратов

Deriving the OLS Estimators in Simple Linear Regression Model - Part 1

Deriving the OLS Estimators in Simple Linear Regression Model - Part 1

Введение в метод наименьших квадратов с примерами

Введение в метод наименьших квадратов с примерами

Ordinary Least Squares Regression

Ordinary Least Squares Regression

Find the Value of OLS estimators Linear Regression Model | Mathematical Economics | Ecoholics

Find the Value of OLS estimators Linear Regression Model | Mathematical Economics | Ecoholics

Regression Output Explained

Regression Output Explained

Regression Episode 4: Inferences about Specific Parameters

Regression Episode 4: Inferences about Specific Parameters

Linear Regression Using Least Squares Method - Line of Best Fit Equation

Linear Regression Using Least Squares Method - Line of Best Fit Equation

Econometrics // Lecture 3: OLS and Goodness-Of-Fit (R-Squared)

Econometrics // Lecture 3: OLS and Goodness-Of-Fit (R-Squared)

Introduction to residuals and least squares regression

Introduction to residuals and least squares regression

Growth Curve Episode 1: What Is Growth Curve Modeling?

Growth Curve Episode 1: What Is Growth Curve Modeling?

derivation of B0 and B1 in regression

derivation of B0 and B1 in regression

Gauss-Markov assumptions part 1

Gauss-Markov assumptions part 1

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]