ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Knowledge Graphs w/ AI Agents form CRYSTAL (MIT)

artificial intelligence

AI models

LLM

VLM

VLA

Multi-modal model

explanatory video

RAG

multi-AI

multi-agent

Fine-tune

Pre-train

RLHF

AI Agent

Multi-agent

Vision Language Model

Video AI

Автор: Discover AI

Загружено: 2025-02-21

Просмотров: 7713

Описание: A knowledge graph is a structured representation of information, consisting of entities (nodes) connected by relationships (edges). It serves as a dynamic framework where an AI agent can store, organize, and reason about knowledge.

In this scenario, the AI continuously expands the graph by integrating new information, aiming to create a "knowledge crystal"—a coherent, interconnected system supporting logical reasoning.

all rights w/ authors for referenced parts:
Agentic Deep Graph Reasoning Yields Self-Organizing Knowledge Networks
Markus J. Buehler
‪@mit‬

code available at:
https://github.com/lamm-mit/PRefLexOR
PRefLexOR: Preference-based Recursive Language Modeling for Exploratory Optimization of Reasoning and Agentic Thinking
Apache 2.0 license
A NEW framework by MIT, that combines preference optimization with concepts from Reinforcement Learning (RL) to enable models to self-teach through iterative reasoning improvements. Central to PRefLexOR are thinking tokens, which explicitly mark reflective reasoning phases within model outputs, allowing the model to recursively engage in multi-step reasoning, revisiting, and refining intermediate steps before producing a final output. The foundation of PRefLexOR lies in Odds Ratio Preference Optimization (ORPO), where the model learns to align its reasoning with human-preferred decision paths by optimizing the log odds between preferred and non-preferred responses. The integration of Direct Preference Optimization (DPO) further enhances model performance by using rejection sampling to fine-tune reasoning quality, ensuring nuanced preference alignment. This hybrid approach between ORPO and DPO mirrors key aspects of RL, where the model is continuously guided by feedback to improve decision-making and reasoning. Active learning mechanisms allow PRefLexOR to dynamically generate new tasks, reasoning steps, and rejected answers on-the-fly during training. This adaptive process enables the model to self-teach as it continually improves through real-time feedback and recursive processing.

#knowledgegraph
#airesearch
#reasoning

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Knowledge Graphs w/ AI Agents form CRYSTAL (MIT)

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]