ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Multidimensional Scaling: Theory And Applications

Автор: Tralie Thinks Through

Загружено: 2025-10-03

Просмотров: 184

Описание: I discuss multidimensional scaling, a set of techniques for coming up with Euclidean point clouds that best match a specified distance matrix. This is useful to get a spatial visualization of data. I talk about some fun applications to survey data, ranked choice voting similarity, and bending invariant representations of 3D shapes. Along the way, I carefully derive all of the algorithms using linear algebra, so it's a great review if you're rusty on things like spectral decompositions and the singular value decomposition! I also make an explicit connection between classic multidimensional scaling and PCA, because I was never able to find a satisfying reference that did that.

Notebook/Code Here:
https://ctraliedotcom.github.io/CMDS/...

Table of Contents:
00:00 Intro Sequence
00:10 Multidimensional Scaling Motivation
04:34 Matrix Form of Squared Euclidean Distance Matrices
10:32 Double Centering
18:07 Geometric Interpretation of Double Centering
19:25 Solving for HX with Gram Eigendecomposition
23:37 Properties of Solution US^{1/2}
27:16 Coding Up Classical Multidimensional Scaling (CMDS)
35:58 Principal Component Analysis (PCA) And Projected Variance
41:58 Maximizing Projected Variance
48:26 SVD Connection Between PCA and CMDS
56:23 Cleaning up CMDS code
59:20 Non-Euclidean Distance Matrices / Sphere Example
1:09:00 Academic Subject Similarities
1:12:49 Ranked-Choice Voting Similarities
1:24:50 Bending Invariant 3D Shape Representations
1:35:07 p-Stress
1:38:45 Solving/Optimizing p-Stress in PyTorch
1:49:00 p-Stress on Ranked-Choice Voting
1:53:57 p-Stress on 3D Shapes
1:55:44 Adding anchors to fix points
2:06:20 Masking for nonrigid deformations



References:
Elad, Asi, and Ron Kimmel. "Bending invariant representations for surfaces." Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001. Vol. 1. IEEE, 2001.

Heat method for geodesic distances:
https://www.cs.cmu.edu/~kmcrane/Proje...

Kendall-Tau Distance:
https://ursinusdatastructures.github....

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Multidimensional Scaling: Theory And Applications

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

The Magic of Distance Matrices

The Magic of Distance Matrices

Pitch Tracking with Probabalistic Yin

Pitch Tracking with Probabalistic Yin

Computer Graphics

Computer Graphics

Digital Music Processing

Digital Music Processing

About the Computational Problems in Griffiths Quantum

About the Computational Problems in Griffiths Quantum

Doda - Pamiętnik (Official Video)

Doda - Pamiętnik (Official Video)

Support Vector Machines — Intuition, Kernels & Hands‑On Demos

Support Vector Machines — Intuition, Kernels & Hands‑On Demos

20 КРУТЕЙШИХ ГАДЖЕТОВ С АМАЗОНА, КОТОРЫЕ ВЫ ЗАХОТИТЕ КУПИТЬ

20 КРУТЕЙШИХ ГАДЖЕТОВ С АМАЗОНА, КОТОРЫЕ ВЫ ЗАХОТИТЕ КУПИТЬ

Движение к цели короткими шагами

Движение к цели короткими шагами

Solving a 'Stanford' University entrance exam | t=?

Solving a 'Stanford' University entrance exam | t=?

AI ruined bug bounties

AI ruined bug bounties

Richard Feynman: Explains Why LIGHT does not move

Richard Feynman: Explains Why LIGHT does not move

Digital Music 15: Z-Transform of Combs And Moving Averages

Digital Music 15: Z-Transform of Combs And Moving Averages

The $285 Billion Crash Wall Street Won't Explain Honestly. Here's What Everyone Missed.

The $285 Billion Crash Wall Street Won't Explain Honestly. Here's What Everyone Missed.

Satya Nadella SCRAMBLES As Microsoft Copilot Becomes Company's BIGGEST Embarrassment

Satya Nadella SCRAMBLES As Microsoft Copilot Becomes Company's BIGGEST Embarrassment

Digital Music Module 15: Designing Filters with The DFT

Digital Music Module 15: Designing Filters with The DFT

Claude Opus 4.6 — ЛУЧШАЯ модель.

Claude Opus 4.6 — ЛУЧШАЯ модель.

The Domain Name System (DNS) Protocol Tutorial

The Domain Name System (DNS) Protocol Tutorial

Wub Wub Sound 3 Ways in Python

Wub Wub Sound 3 Ways in Python

26 НОВЫХ ТОВАРОВ с АЛИЭКСПРЕСС 2026, Новые ГАДЖЕТЫ От Которых Точно ОФИГЕЕШЬ + КОНКУРС

26 НОВЫХ ТОВАРОВ с АЛИЭКСПРЕСС 2026, Новые ГАДЖЕТЫ От Которых Точно ОФИГЕЕШЬ + КОНКУРС

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]