ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

InvSlotGNN: Unsupervised Viewpoint Invariant Multi-Object Representations and Visual Dynamics

Автор: Alireza Rezazadeh

Загружено: 2025-02-23

Просмотров: 24

Описание: Learning multi-object dynamics purely from visual data is challenging due to the need for robust object representations that can be learned through robot interactions. In a previous work, we introduced two novel architectures: SlotTransport for discovering object-centric representations from single-view RGB images, referred to as slots, and SlotGNN for predicting scene dynamics from single-view RGB images and robot interactions using the discovered slots. This paper introduces InvSlotGNN, a novel framework for learning multiview slot discovery and dynamics that are invariant to the camera viewpoint. First, we demonstrate that SlotTransport can be trained on multiview data such that a single model discovers temporally aligned, object-centric representations from a wide range of different camera angles. These slots bind to objects from various viewpoints, even under occlusion or absence. Next, we introduce InvSlotGNN, an extension of SlotGNN, that learns multi-object dynamics invariant to the camera angle and predicts the future state from observations taken by uncalibrated cameras. InvSlotGNN learns a graph representation of the scene using the slots from SlotTransport and performs relational and spatial reasoning to predict the future state of the scene for arbitrary viewpoints, conditioned on robot actions. We demonstrate the effectiveness of SlotTransport in learning multiview object-centric features that accurately encode visual and positional information. Furthermore, we highlight the accuracy of InvSlotGNN in downstream robotic tasks, including long-horizon prediction and multi-object rearrangement. Finally, with minimal real data, our framework robustly predicts slots and their dynamics in real-world multiview scenarios.

Project Page: https://www.alireza.page/invslotgnn

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
InvSlotGNN: Unsupervised Viewpoint Invariant Multi-Object Representations and Visual Dynamics

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]