DSI | Neural Representations for Volume Visualization by Josh Levine
Автор: Inside Livermore Lab
Загружено: 2022-06-14
Просмотров: 256
Описание:
In this talk, I will describe two projects, both joint work with collaborators at Vanderbilt University. The first project studies how generative neural models can be used to model the process of volume rendering scalar fields. We construct a generative adversarial network that learns the mapping from volume rendering parameters, such as viewpoint and transfer function, to the rendered image. In doing so, we can analyze the volume itself and provide new mechanisms for guiding the user in transfer function editing and exploring the space of possible images that can be volume rendered. Both our training process and applications are available on the web at https://github.com/matthewberger/tfgan.
In the second part of my talk, I will explore a recent neural modeling approach for building compressive representations of volume data. This approach represents volumetric scalar fields as learned implicit functions wherein a neural network maps a point in the domain to an output scalar value. By setting the number of weights of the neural network to be smaller than the input size, we achieve compressive function approximation. Combined with carefully quantizing network weights, we show that this approach yields highly compact representations that outperform state-of-the-art volume compression approaches. We study the impact of network design choices on compression performance, highlighting how conceptually simple network architectures are beneficial for a broad range of volumes. Our compression approach is hosted at https://github.com/matthewberger/neur...
Joshua A. Levine is an associate professor in the Department of Computer Science at University of Arizona. Prior to starting at Arizona in 2016, he was an assistant professor at Clemson University from 2012 to 2016, and before that a postdoctoral research associate at the University of Utah’s SCI Institute from 2009 to 2012. He is a recipient of the 2018 DOE Early Career award. He received his PhD in Computer Science from The Ohio State University in 2009 after completing BS degrees in Computer Engineering and Mathematics in 2003 and an MS in Computer Science in 2004 from Case Western Reserve University. His research interests include visualization, geometric modeling, topological analysis, mesh generation, vector fields, performance analysis, and computer graphics.Joshua A. Levine is an associate professor in the Department of Computer Science at University of Arizona. Prior to starting at Arizona in 2016, he was an assistant professor at Clemson University from 2012 to 2016, and before that a postdoctoral research associate at the University of Utah’s SCI Institute from 2009 to 2012. He is a recipient of the 2018 DOE Early Career award. He received his PhD in Computer Science from The Ohio State University in 2009 after completing BS degrees in Computer Engineering and Mathematics in 2003 and an MS in Computer Science in 2004 from Case Western Reserve University. His research interests include visualization, geometric modeling, topological analysis, mesh generation, vector fields, performance analysis, and computer graphics.
Learn more about LLNL's Data Science Institute: https://data-science.llnl.gov/latest/...
💻 LLNL News: https://www.llnl.gov/news
📲 Instagram: / livermore_lab
🤳 Facebook: / livermore.lab
🐤 Twitter: / livermore_lab
🔔 Subscribe: / livermorelab
About LLNL: Lawrence Livermore National Laboratory has a mission of strengthening the United States’ security through development and application of world-class science and technology to: 1) enhance the nation’s defense, 2) reduce the global threat from terrorism and weapons of mass destruction, and 3) respond with vision, quality, integrity and technical excellence to scientific issues of national importance. Learn more about LLNL: https://www.llnl.gov/.
LLNL-VIDEO-833188
#LLNL #DataScienceInsitute #VolumeVisualization
Повторяем попытку...
Доступные форматы для скачивания:
Скачать видео
-
Информация по загрузке: