ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Music Search and Recommendation from Millions of Songs

Автор: Berkeley School of Information

Загружено: 2015-04-09

Просмотров: 6822

Описание: http://www.ischool.berkeley.edu/newsa...
Gert Lanckriet
April 8, 2015, South Hall, UC Berkeley

Advances in music production, distribution, and consumption have made millions of songs available to virtually anyone on the planet, through the Internet. To allow users to retrieve the desired content, algorithms for automatic music indexing and recommendation are a must.

In this talk, I will discuss some aspects of automated music analysis for music search and recommendation: i) automated music tagging for semantic retrieval (e.g., searching for “funky jazz with male vocals”), and ii) a query-by-example paradigm for content-based music recommendation, wherein a user queries the system by providing one or more songs, and the system responds with a list of relevant or similar song recommendations (e.g., playlist generation for online radio). Finally, I will introduce our most recent research on context-aware recommendation, which leverages various sensor' signals in smartphones to infer user context (activity, mood) and provide music recommendations accordingly, without requiring an active user query (zero click).

I will provide both high-level discussion and technical detail. For example, for query-by-example search, collaborative filter techniques perform well when historical data (e.g., user ratings, user playlists, etc.) is available. However, their reliance on historical data impedes performance on novel or unpopular items. To combat this problem, we rely on content-based similarity, which naturally extends to novel items, but is typically out-performed by collaborative filter methods. I will present a method for optimizing content-based similarity by learning from a sample of collaborative filter data. I will show how this algorithm may be adapted to improve recommendations if a variety of information besides musical content is available as well (e.g., music video clips, web documents, lyrics, and/or art work describing musical artists).

Bio:

Gert Lanckriet is an associate professor of electrical and computer engineering at UC San Diego, where he currently heads the Computer Audition Laboratory (CALab) and leads an interdepartmental group on Computational Statistics and Machine Learning (COSMAL). He researches the interplay between machine learning, applied statistics, and convex optimization, inspired by and with applications to computer audition and music information retrieval.

He was awarded the SIAM Optimization Prize in 2008 and is the recipient of a Hellman Fellowship, an IBM Faculty Award, an NSF CAREER Award, and an Alfred P. Sloan Foundation Research Fellowship. In 2011, MIT Technology Review named him one of the 35 top young technology innovators in the world (TR35). In 2014, he received the Best Ten-Year Paper Award at the International Conference on Machine Learning.

In 2014, he co-founded Benefunder, an innovative organization that works with wealth management firms to connect philanthropists with leading researchers across the nation to fund their research. He received a master’s degree in electrical engineering from the Katholieke Universiteit Leuven, Belgium, and M.S. and Ph.D. degrees in wlectrical wngineering and computer ccience from UC Berkeley.

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Music Search and Recommendation from Millions of Songs

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

Building Production Recommender Systems - Maciej Kula - WEB2DAY 2017

Building Production Recommender Systems - Maciej Kula - WEB2DAY 2017

Deep Learning for Personalized Search and Recommender Systems part 1

Deep Learning for Personalized Search and Recommender Systems part 1

Recommendation Systems / Engines with TensorFlow - Google Cloud Platform User Group Singapore

Recommendation Systems / Engines with TensorFlow - Google Cloud Platform User Group Singapore

Spotify ML Question - Design a Recommendation System (Full mock interview)

Spotify ML Question - Design a Recommendation System (Full mock interview)

Laude × CSGE: Bill Joy - 50 Years of Advancements: Computing and Technology 1975-2025 (and beyond)

Laude × CSGE: Bill Joy - 50 Years of Advancements: Computing and Technology 1975-2025 (and beyond)

Как я учусь в 45+? 🤓Ответ: по науке

Как я учусь в 45+? 🤓Ответ: по науке

Music Processing using Chroma Features

Music Processing using Chroma Features

Парадокс дней рождения | Лекции по математике – математик Алексей Савватеев | Научпоп

Парадокс дней рождения | Лекции по математике – математик Алексей Савватеев | Научпоп

Выступление Андрея Безрукова на Зиновьевских чтениях — 2026

Выступление Андрея Безрукова на Зиновьевских чтениях — 2026

Даша Клишина — спорт в США и России. Разница менталитетов и условий

Даша Клишина — спорт в США и России. Разница менталитетов и условий

Почему Питер Шольце — математик, каких бывает раз в поколение?

Почему Питер Шольце — математик, каких бывает раз в поколение?

Using Machine Learning for Predicting NFL Games | Data Dialogs 2016

Using Machine Learning for Predicting NFL Games | Data Dialogs 2016

Зеленский обратился к Путину / Срочный ответ Москвы

Зеленский обратился к Путину / Срочный ответ Москвы

Как я использую ИИ для качественного анализа всего

Как я использую ИИ для качественного анализа всего

RecSys 2016: Tutorial on Lessons Learned from Building Real-life Recommender Systems

RecSys 2016: Tutorial on Lessons Learned from Building Real-life Recommender Systems

Как чтение влияет на повышение твоего интеллекта | Татьяна Черниговская #генетика #могз #наука

Как чтение влияет на повышение твоего интеллекта | Татьяна Черниговская #генетика #могз #наука

Music Information Retrieval Using Locality Sensitive Hashing

Music Information Retrieval Using Locality Sensitive Hashing

🧪🧪🧪🧪Как увидеть гиперпространство (4-е измерение)

🧪🧪🧪🧪Как увидеть гиперпространство (4-е измерение)

Music Recommendations at Spotify - Oskar Stål, Spotify

Music Recommendations at Spotify - Oskar Stål, Spotify

Выступление Сергея Караганова на Зиновьевских чтениях — 2026

Выступление Сергея Караганова на Зиновьевских чтениях — 2026

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]