ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

How To See With An Event Camera - Cedric Scheerlinck PhD Talk

Автор: Cedric Scheerlinck

Загружено: 2020-03-11

Просмотров: 13374

Описание: Slides: https://docs.google.com/presentation/...

Website: https://cedricscheerlinck.com
Thesis PDF: https://cedricscheerlinck.com/files/t...

Continuous-time Intensity Estimation Using Event Cameras: https://cedricscheerlinck.com/files/2...

Asynchronous Spatial Image Convolutions for Event Cameras: https://cedricscheerlinck.com/files/2...

CED: Color Event Camera Dataset: https://cedricscheerlinck.com/files/2...

Fast Image Reconstruction with an Event Camera: https://cedricscheerlinck.com/files/2...

Abstract: Seeing enables us to recognise people and things, detect motion, perceive our 3D environment and more. Light stimulates our eyes, sending electrical impulses to the brain where we form an image and extract useful information. While we do not fully understand how, we know that it happens on a tight energy budget with limited computational power, especially compared to the artificial analogues to our eyes and brain: cameras and computers. The field of neuromorphic engineering (neuro - brain, morphic - like) aims to understand the brain and build one on a chip. We still have a long way to go - though we've already built the eyes.
Event cameras are bio-inspired sensors that offer improvements over conventional cameras, however, extracting useful information from the raw data output is challenging. Compared to conventional cameras, event cameras (i) are fast, (ii) can see dark and bright at the same time, (iii) have less motion-blur, (iv) use less energy and (v) transmit data efficiently. However, the raw output of event cameras, called events, cannot be easily interpreted or processed like conventional images. Reconstructing images from events enables human-interpretable visualisation and application of image processing algorithms. Machine learning can be used to extract information (e.g., classification, motion, 3D structure) from images, or even directly from events. I believe that reconstructing images and machine learning with events are two challenging yet promising directions to unlocking the full potential of event cameras. In this talk I will present (i) continuous-time complementary filtering for real-time image reconstruction with event cameras, (ii) a framework for asynchronous, per-event spatial image convolution and (iii) convolutional neural networks for image reconstruction and optic flow with event cameras.

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
How To See With An Event Camera - Cedric Scheerlinck PhD Talk

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

Event Cameras: a New Way of Sensing - Davide Scaramuzza - ICCP 2024 Keynote

Event Cameras: a New Way of Sensing - Davide Scaramuzza - ICCP 2024 Keynote

ECC2024 - Event Based Vision for Control

ECC2024 - Event Based Vision for Control

Dynamic Vision Sensor (DVS)

Dynamic Vision Sensor (DVS)

Spiking Neural Networks for More Efficient AI Algorithms

Spiking Neural Networks for More Efficient AI Algorithms

Mathias Gehrig on Event Cameras and How to Make Them Useful | Toronto AIR Seminar

Mathias Gehrig on Event Cameras and How to Make Them Useful | Toronto AIR Seminar

Камеры нового поколения имитируют наши глаза

Камеры нового поколения имитируют наши глаза

Visualizing transformers and attention | Talk for TNG Big Tech Day '24

Visualizing transformers and attention | Talk for TNG Big Tech Day '24

MIT Robotics – Vladlen Koltun – A Quiet Revolution in Robotics Continued

MIT Robotics – Vladlen Koltun – A Quiet Revolution in Robotics Continued

Efficient, Data-Driven Perception with Event Cameras (Ph.D. Defense of Daniel Gehrig)

Efficient, Data-Driven Perception with Event Cameras (Ph.D. Defense of Daniel Gehrig)

Robust, Visual-Inertial State Estimation: from Frame-based to Event-based Cameras

Robust, Visual-Inertial State Estimation: from Frame-based to Event-based Cameras

Градиентный спуск, как обучаются нейросети | Глава 2, Глубинное обучение

Градиентный спуск, как обучаются нейросети | Глава 2, Глубинное обучение

Training Spiking Neural Networks Using Lessons From Deep Learning

Training Spiking Neural Networks Using Lessons From Deep Learning

Event-based Near-eye Gaze Tracking at 10,000 Hz | IEEE VR 2021

Event-based Near-eye Gaze Tracking at 10,000 Hz | IEEE VR 2021

Light field photography and microscopy

Light field photography and microscopy

Silicon Retinas

Silicon Retinas

Davide Scaramuzza and Guillermo Gallego. Event-based Cameras: Challenges and Opportunities

Davide Scaramuzza and Guillermo Gallego. Event-based Cameras: Challenges and Opportunities

What is Event-Based Vision | Metavision by Prophesee

What is Event-Based Vision | Metavision by Prophesee

Continuous-time Intensity Estimation Using Event Cameras

Continuous-time Intensity Estimation Using Event Cameras

Event Cameras with Davide Scaramuzza | Ep. 347

Event Cameras with Davide Scaramuzza | Ep. 347

Neuromorphic Computing from the Computer Science Perspective: Algorithms and Applications

Neuromorphic Computing from the Computer Science Perspective: Algorithms and Applications

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]