Problem 4.11a | Introduction to Quantum Mechanics (Griffiths)
Автор: Hayashi Manabu
Загружено: 2020-12-13
Просмотров: 4167
Описание: Constructing ψ(n = 2, l = 0, m = 0). Halfway in the video I invoke the Gamma function to evaluate the integrals. If you're unsure where the factorial formula comes from, you can first use integration by parts to prove that the integral definition implies that Γ(z + 1) = zΓ(z). You can also show that Γ(1) = 1 easily by simply substituting z = 1 into the integral formula and solving it. Based on these two results, it is then possible to deduce that Γ(n) = (n - 1)! if n is an integer.
Повторяем попытку...
Доступные форматы для скачивания:
Скачать видео
-
Информация по загрузке: