41. Autoencoders for Dimensionality Reduction with Neural Networks
Автор: Emmanuel Jesuyon Dansu
Загружено: 2025-06-13
Просмотров: 36
Описание:
In this video, we dive into autoencoders — a powerful type of neural network used for reducing the dimensionality of complex data.
Learn how the encoder compresses high-dimensional inputs into a compact latent space, and how the decoder reconstructs the original data from this compressed form.
We’ll explain how the network is trained to minimize reconstruction errors and walk you through a practical Python implementation using the popular MNIST dataset.
Whether you want to understand the theory or see the code in action, this guide will help you grasp how autoencoders can uncover meaningful features and simplify data for easier analysis and visualization.
#EJDansu #Mathematics #Maths #MathswithEJD #Goodbye2024 #Welcome2025 #ViralVideos #Autoencoders #MachineLearning #NeuralNetworks #DimensionalityReduction #DeepLearning #PythonCoding #DataScience #AI #MNIST #Reconstruction
######################################################
Download the Jupyter Notebook file here:
https://drive.google.com/drive/folder...
######################################################
-Feel very free to follow me on all channels: https://linktr.ee/ejdansu
-Tech-relevant playlists:
Basic Calculus
• Basic Calculus
Data Analysis with Python
• Data Analysis with Python
Game Theory
• Game Theory
Graph & Network Theory
• Graph & Network Theory
Linear Programming
• Linear Programming
Matrices
• Matrices
Numerical Analysis
• Numerical Analysis
Numerical Optimisation Techniques
• Numerical Optimisation Techniques
Probability
• Probability
Scientific Computing with Python
• Scientific Computing with Python
Set Theory
• Set Theory
SQL with Python
• SQL with Python
Statistics
• Statistics
Vectors
• Vectors
Повторяем попытку...

Доступные форматы для скачивания:
Скачать видео
-
Информация по загрузке: