ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

MIA: Eric Kelsic, Machine-guided capsid engineering for gene therapy; Sam Sinai, Sequence design

Автор: Broad Institute

Загружено: 2020-10-15

Просмотров: 3700

Описание: October 7, 2020
Models, Inference and Algorithms
Broad Institute

Meeting:    • MIA: Eric Kelsic, Machine-guided capsid en...  

Machine-guided capsid engineering for gene therapy

Eric Kelsic
Dyno Therapeutics

Machine-guided capsid engineering represents a new approach to overcome the current challenges of in vivo gene delivery. Such an approach combines three advanced technologies: i. next-gen library synthesis, ii. next-gen sequencing, and iii. machine learning. With this workflow the search for improved capsids can be dramatically accelerated. This talk will review the technological advances that are pushing the field of AAV capsid engineering toward machine-guided methods, describe and explore the promise of this new approach, and discuss anticipated challenges. In the near future, machine-guided methods will revolutionize our ability to design robustly efficient, safe and targeted vectors for the treatment of genetic conditions.

Primer: Biological sequence design through machine-guided exploration

Sam Sinai
Dyno Therapeutics

Efficient design of biological sequences will have a great impact across many industry and healthcare domains. However, discovering improved sequences requires solving a difficult optimization problem. Traditionally, this challenge was approached by biologists through a model-free method known as “directed evolution”, the iterative process of random mutation and selection. As the ability to build models that capture the sequence-to-function map improves, such models can be used as oracles to screen sequences before committing to experiments. In recent years, interest in better algorithms that effectively use such oracles to outperform model-free approaches has intensified. These span from standard Bayesian Optimization approaches, to regularized generative models and adaptations of reinforcement learning. This primer will compare such algorithms based on a comprehensive set of criteria that are important from both machine learning and biological perspectives.

For more information visit: https://www.broadinstitute.org

Copyright Broad Institute, 2020. All rights reserved.

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
MIA: Eric Kelsic, Machine-guided capsid engineering for gene therapy; Sam Sinai, Sequence design

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

Machine Learning in Drug Discovery: Oren Kraus

Machine Learning in Drug Discovery: Oren Kraus

20. How Nuclear Energy Works

20. How Nuclear Energy Works

Nvidia's Jensen Huang on an AI Bubble, Trump, and the Arms Race with China

Nvidia's Jensen Huang on an AI Bubble, Trump, and the Arms Race with China

AI 101 with Brandon Leshchinskiy

AI 101 with Brandon Leshchinskiy

Samuel C.C. Ting

Samuel C.C. Ting

Machine Learning in Drug Discovery: Ava Amini

Machine Learning in Drug Discovery: Ava Amini

Byliśmy w błędzie? Odkryto najzdrowszy poziom witaminy D. Masz taki?

Byliśmy w błędzie? Odkryto najzdrowszy poziom witaminy D. Masz taki?

„Wreszcie mamy coś, co wygląda na przełom!” | 7 metrów pod ziemią

„Wreszcie mamy coś, co wygląda na przełom!” | 7 metrów pod ziemią

Lec 9: Supply and Demand & Consumer/Producer Surplus

Lec 9: Supply and Demand & Consumer/Producer Surplus

Ginger Bill designs AsyncIO for Odin live

Ginger Bill designs AsyncIO for Odin live

Зачать от двух пап, родить от ИИ и никогда не состариться. Илья Колмановский о сенсациях года

Зачать от двух пап, родить от ИИ и никогда не состариться. Илья Колмановский о сенсациях года

Machine Learning in Drug Discovery Symposium - Opening Remarks

Machine Learning in Drug Discovery Symposium - Opening Remarks

«Я тебя yбью» - ссора накануне рокового выстрела. МАЯКОВСКИЙ-БРИКИ. 11 серия @Сама Меньшова

«Я тебя yбью» - ссора накануне рокового выстрела. МАЯКОВСКИЙ-БРИКИ. 11 серия @Сама Меньшова

MIT 6.S191: Convolutional Neural Networks

MIT 6.S191: Convolutional Neural Networks

Lecture 5: Intro to DC/DC, Part 1

Lecture 5: Intro to DC/DC, Part 1

Vergecast live at CES 2026 | The Vergecast

Vergecast live at CES 2026 | The Vergecast

Lecture 2: Story Proofs, Axioms of Probability | Statistics 110

Lecture 2: Story Proofs, Axioms of Probability | Statistics 110

ML4H - Akshay Chaudhari: Generative Models for Text and Images: Development and Evaluation

ML4H - Akshay Chaudhari: Generative Models for Text and Images: Development and Evaluation

Machine Learning in Drug Discovery Symposium: Lightning Talks

Machine Learning in Drug Discovery Symposium: Lightning Talks

MIT 6.S183 A Practical Introduction to Diffusion Models, Lecture 1

MIT 6.S183 A Practical Introduction to Diffusion Models, Lecture 1

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]