ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

LLM Course – Build a Semantic Book Recommender (Python, OpenAI, LangChain, Gradio)

Автор: freeCodeCamp.org

Загружено: 2025-01-27

Просмотров: 248632

Описание: Discover how to build an intelligent book recommendation system using the power of large language models and Python. Learn to transform book descriptions into mathematical representations that enable precise content-based matching. By the end of this course, you'll have built a recommendation engine that helps readers discover their next favorite book.

💻 Code from this tutorial: https://github.com/t-redactyl/llm-sem...

🏗️ JetBrains provided a grant to make this course possible.

⭐️ Resources ⭐️
Free 3-Month PyCharm Professional Subscription
Code: PyCharm4FreeCodeCamp
Download PyCharm: https://jb.gg/pycharm-fcc
Redeem PyCharm 3-month free license: jetbrains.com/store/redeem

Download PyCharm: https://jb.gg/pycharm-fcc
Kaggle datasets: https://kaggle.com/datasets
7K books dataset by Dylan Castillo: https://kaggle.com/datasets/dylanjcas...
Hugging Face free NLP course: https://huggingface.co/learn/nlp-cour...
Explanation of transformer encoder-decoder models (from Hugging Face NLP course): https://huggingface.co/learn/nlp-cour...
Explanation of transformer decoder-only models (from Hugging Face NLP course): https://huggingface.co/learn/nlp-cour...
Explanation of transformer encoder-only models (from Hugging Face NLP course): https://huggingface.co/learn/nlp-cour...
Hugging Face Hub models page: https://huggingface.co/models
OpenAI models: https://platform.openai.com/docs/models
Explanation of vector index (from Weaviate): https://weaviate.io/developers/weavia...
LangChain Python docs: https://python.langchain.com/docs/int...
LangChain chat model integrations: https://python.langchain.com/docs/int...
OpenAI billing page: https://platform.openai.com/settings/...
OpenAI API keys page: https://platform.openai.com/settings/...
Explanation of zero-shot classification (from Hugging Face): https://huggingface.co/tasks/zero-sho...
Information about fine-tuned emotion classification model: https://dataloop.ai/library/model/j-h...
Getting started with Gradio: https://gradio.app/guides/quickstart
Gradio playground: https://gradio.app/playground
Gradio themes: https://gradio.app/guides/theming-guide
Further work by Jodie about LLMs
Talk from GOTO Amsterdam giving an overview of LLMs:    • Beyond the Hype: A Realistic Look at Large...  
Talk from NDC Oslo about whether LLMs are showing signs of humanity:    • Mirror, mirror: LLMs and the illusion of h...  
Talk from PyCon US about hallucinations in LLMs:    • Talks - Jodie Burchell: Lies, damned lies ...  
Tutorial on doing sentiment analysis with LLMs: https://blog.jetbrains.com/pycharm/20...
Article on LLM’s understanding of language: https://t-redactyl.io/blog/2024/06/ca...
Article on sentience in LLMs: https://t-redactyl.io/blog/2024/07/co...
Article on intelligence in LLMs: https://t-redactyl.io/blog/2024/07/ar...
12:25

❤️ Support for this channel comes from our friends at Scrimba – the coding platform that's reinvented interactive learning: https://scrimba.com/freecodecamp

⭐️ Chapters ⭐️
0:00:00 Intro
0:03:05 Introduction to getting and preparing text data
0:05:51 Starting a new PyCharm project
0:16:59 Patterns of missing data
0:25:21 Checking the number of categories
0:28:27 Remove short descriptions
0:34:36 Final cleaning steps
0:38:11 Introduction to LLMs and vector search
0:54:43 LangChain
0:58:46 Splitting the books using CharacterTextSplitter
1:02:57 Building the vector database
1:05:50 Getting book recommendations using vector search
1:11:07 Introduction to zero-shot text classification using LLMs
1:15:34 Finding LLMs for zero-shot classification on Hugging Face
1:22:21 Classifying book descriptions
1:26:24 Checking classifier accuracy
1:35:19 Introduction to using LLMs for sentiment analysis
1:39:25 Finding fine-tuned LLMs for sentiment analysis
1:42:07 Extracting emotions from book descriptions
1:54:25 Introduction to Gradio
1:56:51 Building a Gradio dashboard to recommend books
2:12:49 Outro

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
LLM Course – Build a Semantic Book Recommender (Python, OpenAI, LangChain, Gradio)

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

Intro to Machine Learning featuring Generative AI

Intro to Machine Learning featuring Generative AI

Deep Dive into LLMs like ChatGPT

Deep Dive into LLMs like ChatGPT

LangGraph Complete Course for Beginners – Complex AI Agents with Python

LangGraph Complete Course for Beginners – Complex AI Agents with Python

Learn JavaScript - Full Course for Beginners

Learn JavaScript - Full Course for Beginners

Stanford CS229 I Machine Learning I Building Large Language Models (LLMs)

Stanford CS229 I Machine Learning I Building Large Language Models (LLMs)

Ollama Course – Build AI Apps Locally

Ollama Course – Build AI Apps Locally

Самая Быстрая Машина в Мире vs Гепард!

Самая Быстрая Машина в Мире vs Гепард!

Andrej Karpathy: Software Is Changing (Again)

Andrej Karpathy: Software Is Changing (Again)

Learn RAG From Scratch – Python AI Tutorial from a LangChain Engineer

Learn RAG From Scratch – Python AI Tutorial from a LangChain Engineer

End-to-End Books Recommender System Implementation using Collaborative Filtering 🔥

End-to-End Books Recommender System Implementation using Collaborative Filtering 🔥

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]