ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Important lines in a scalene obtuse triangle: altitudes, medians, angle bisectors, and perpen... | 1

mathematics

maths

math

important lines

special lines

scalene obtuse triangle

altitudes

medians

angle bisectors

perpendicular bisectors

Автор: Sohcahtoa1609

Загружено: 2024-08-23

Просмотров: 181

Описание: Subscribe to my YouTube channel:    / @sohcahtoa1609  

Support my work on Patreon so I can keep creating content:   / sohcahtoa1609  

I’ve added subtitles to my video. If you struggle to understand the AI voice that narrates the video, you can turn on the subtitles by clicking on the "Subtitles / Closed Captions" icon located in the bottom-right corner of the video player.

I’ve also added timestamps to my video, so you can navigate through it more easily. You can find them below.

/* *** *** *** *** *** *** *** */

Description

In a triangle, there are four types of special lines, namely the triangle's altitudes, medians, angle bisectors, and perpendicular bisectors.

An altitude is the perpendicular projection of a vertex onto the side opposite the vertex. A triangle has three altitudes, which intersect in a single point called the orthocentre of the triangle. A median is a line segment from a vertex to the midpoint of the side opposite the vertex. A triangle has three medians, which intersect in a single point called the centroid of the triangle. The bisector of an angle is a line that divides the angle into two congruent angles. A triangle has three angle bisectors, which intersect in a single point called the incentre of the triangle. Lastly, the perpendicular bisector of a side is a line that intersects the side at a right angle and divides it into two congruent line segments. A triangle has three perpendicular bisectors, which intersect in a single point called the circumcentre of the triangle.

In this video, we're going to learn about the altitudes, medians, angle bisectors, and perpendicular bisectors of a scalene obtuse triangle.

/* *** *** *** *** *** *** *** */

Timestamps

00:00 Support my work on Patreon
00:59 The altitudes
01:48 The medians
02:46 The angle bisectors
04:18 The perpendicular bisectors
05:38 Like, share, and leave a comment

/* *** *** *** *** *** *** *** */

Playlists

1) Geometry:    • Geometry  
2) Trigonometry:    • Trigonometry  
3) Arithmetic:    • Arithmetic  
4) Algebra:    • Algebra  
5) Differential calculus:    • Differential calculus  

6) Conic sections:    • Conic sections (geometry)  
7) Triangles:    • Triangles (geometry)  
8) Quadrilaterals:    • Quadrilaterals (geometry)  

/* *** *** *** *** *** *** *** */

You can get the Python script that generates the animation from my Patreon page, namely   / sohcahtoa1609  .

You can support my work on
i) Patreon:   / sohcahtoa1609  
ii) Facebook:   / sohcahtoa1609  
iii) Twitter:   / sohcahtoa1609  
iv) Instagram:   / sohcahtoa1609  

Don’t forget to click on the SUBSCRIBE button. Then, click on the bell and select the option “All” from the drop-down list, to be the first to know when a new video is released.

Lastly, a disclaimer:
1) This video is meant to be a proof of concept.
2) The voice that narrates the video is not mine. It is an AI algorithm that converted my text into speech. English is my second language, and speech is not my forte, so I’ve chosen to use an AI algorithm to convert my text into speech.

#Sohcahtoa1609

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Important lines in a scalene obtuse triangle: altitudes, medians, angle bisectors, and perpen... | 1

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]