C[0,1] is Normed Linear Space but not Banach Space Proof
Автор: Maths With Yash
Загружено: 2024-09-23
Просмотров: 508
Описание:
In this video of Functional Analysis, we prove that the Linear Space C[0,1] of Real Valued Continuous Function on [0,1] is a Normed Linear Space but not a Banach Space (It is not Complete)
Thanks for watching 😊❤️
Subscribe to my channel:
/ @yes2maths
Playlists on channel-
• Functional Analysis
• Inner Product Spaces (Linear Algebra)
• Linear Algebra
• Bilinear Forms (Linear Algebra)
• Lp Spaces (Measure Theory)
• Laguerre Polynomials
• Hermite Polynomials
• Convergence of Infinite Series
• Sequence and Series of Functions
• Real Analysis
• Operations Research
• Special Functions
• Boundary Value Problem
Keywords -
functional Analysis, norm, Normed Linear Space, banach space examples, complete normed linear space
#functionalanalysis #mscmath #universitymath #advancedmaths #bscmaths#metricspace #normedlinearspace
Повторяем попытку...
Доступные форматы для скачивания:
Скачать видео
-
Информация по загрузке: