ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Heterogeneity - Meta-Analysis Workshop Online Video Series Course

Автор: Meta-Analysis

Загружено: 2021-02-04

Просмотров: 24601

Описание: This video is part of a video series on #metaanalysis presented by Dr. Borenstein. The series is available for purchase and viewing through our website at:
https://meta-analysis-workshops.com/p...

In most meta-analyses the effect size varies from study to study. We would all agree that it’s important to understand how much the effect size varies, and to consider the clinical or substantive implications of this variation. In practice, however, this is rarely done. The vast majority of meta-analyses focus on the mean effect size, while little attention is paid to the dispersion in effects. This is because researchers don’t understand how much the effect size varies. In fact, the statistics typically reported for heterogeneity don’t actually tell us how much the effect size varies. For example, the most common index for reporting heterogeneity is the I-squared index, with I-squared values of 25%, 50%, and 75% often assumed to reflect low, moderate, and high levels of heterogeneity. While this use of I-squared is widespread, it is nevertheless incorrect. A meta-analysis where I-squared is 25% could have substantial variation in effects, while a meta-analysis where I-squared is 75% could have only trivial variation in effects. In fact, I present examples where this is true.

In this module I start by reviewing how we think about heterogeneity in a primary study. Then I show that the same ideas apply in a meta-analysis. In a section called “Forget what you know” I show that most of what researchers “know” about heterogeneity is wrong. Statistics such as the Q-value, the p-value, I-squared and Tau-squared, do not tell us how much the effect size varies. Then I discuss the statistics that do actually tell us how much the effect size varies – these include Tau (in some cases) and the prediction interval. I show how to compute and report these values. I then discuss how to use the heterogeneity, in conjunction with the mean effect size, to consider the clinical utility of the treatment or (more generally) the substantive implications of the findings. I also discuss what the other statistics do tell us. The module ends with an appendix that shows how the various statistics are related to each other, using clear and intelligent graphics.

➣ Take a meta-analysis course:
https://meta-analysis-workshops.com/
➣ Meta-analysis software - download your free trial now:
https://meta-analysis.com/
➣ Order Common Mistakes in Meta-Analysis and How to Avoid Them:
https://meta-analysis-books.com/

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Heterogeneity - Meta-Analysis Workshop Online Video Series Course

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

Fixed Effect vs. Random Effects Models - Common Mistakes in Meta-Analysis and How To Avoid Them

Fixed Effect vs. Random Effects Models - Common Mistakes in Meta-Analysis and How To Avoid Them

Course Sample: How to Work Through a Meta-Analysis

Course Sample: How to Work Through a Meta-Analysis

Что такое гетерогенность?

Что такое гетерогенность?

Meta-Analysis Workshop - Course Preview

Meta-Analysis Workshop - Course Preview

I-squared Webinar - I2 Does Not Tell Us How Much the Effect Size Varies - March 9, 2021

I-squared Webinar - I2 Does Not Tell Us How Much the Effect Size Varies - March 9, 2021

How to Do a Meta-Analysis in Minutes Using CMA

How to Do a Meta-Analysis in Minutes Using CMA

Meta-Analysis with CMA - Case Study: Methylphenidate for ADHD

Meta-Analysis with CMA - Case Study: Methylphenidate for ADHD

Effect size calculation in meta analysis

Effect size calculation in meta analysis

Обретение ясности в сложности: введение в концепцию сетевого метаанализа

Обретение ясности в сложности: введение в концепцию сетевого метаанализа

What is Heterogeneity in Meta-Analysis? Beginner's Guide - Straight to the Point (brief lecture)

What is Heterogeneity in Meta-Analysis? Beginner's Guide - Straight to the Point (brief lecture)

Effect size calculation and basic meta-analysis, David B. Wilson

Effect size calculation and basic meta-analysis, David B. Wilson

Meta-Analysis with CMA - Case Study: St. John's Wort

Meta-Analysis with CMA - Case Study: St. John's Wort

4 Course Meta-Analyses VU: Calculating and pooling effect sizes

4 Course Meta-Analyses VU: Calculating and pooling effect sizes

Как выполнить метаанализ в R

Как выполнить метаанализ в R

An introduction to multilevel meta-analysis, Joshua R. Polanin

An introduction to multilevel meta-analysis, Joshua R. Polanin

Стандартное отклонение (простое объяснение)

Стандартное отклонение (простое объяснение)

Systematic Reviews and Meta-Analyses - How to Interpret the Results

Systematic Reviews and Meta-Analyses - How to Interpret the Results

Meta-Analysis with CMA - Case Study: Exercise to Reduce Pain

Meta-Analysis with CMA - Case Study: Exercise to Reduce Pain

Как интерпретировать лесной участок

Как интерпретировать лесной участок

Bias Detection (in Meta-Analyses)

Bias Detection (in Meta-Analyses)

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]