Lagrangian Dual Decision Rules for Multistage Stochastic Mixed Integer Programming
Автор: Centre de recherches mathématiques - CRM
Загружено: 2021-10-18
Просмотров: 546
Описание:
(28 septembre 2021 / September 28, 2021) Atelier Optimisation sous incertitude / Workshop: Optimization under uncertainty
Merve Bodur (University of Toronto, Canada)
Lagrangian Dual Decision Rules for Multistage Stochastic Mixed Integer Programming
Résumé / Abstract: We propose Lagrangian dual decision rules that yield a new approximation approach for multi-stage stochastic mixed integer programming problems. We investigate techniques for using these decision rules to obtain bounds on the optimal value as well as primal feasible policies; and compare the strength of the relaxation from different techniques. Numerical results will be presented to illustrate the quality of the obtained bounds and policies.
Повторяем попытку...
Доступные форматы для скачивания:
Скачать видео
-
Информация по загрузке: